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Early insight on the critical dynamics of phase
transitions arose in a cosmological setting in
an effort to understand the origin of structure
formation in the early Universe. Kibble
pointed out that in a spontaneous symme-
try breaking scenario, when a system is driven
across a phase transition from a high-symme-
try phase to a topologically nontrivial vacuum
manifold, causally disconnected regions of the
system choose independently the broken
symmetry (1, 2). These conflicting choices re-
sult in the formation of topological defects,
such as domain walls in a ferromagnet and
vortices in a superfluid, to name a couple of
familiar examples.
Soon after, Zurek indicated that signatures

of universality in the dynamics of a phase
transition could be tested in condensed matter
systems, e.g., superfluid helium (3, 4). Fur-
ther, he improved the estimate for the av-
erage size of the domains and predicted
a universal power law for the density of to-
pological defects as a function of the rate
at which the phase transition is crossed.
The combination of these ideas is known
as the Kibble−Zurek mechanism (KZM)
and has been a lively subject of both the-
oretical and experimental research during

the last decades. The abundant attempts to
verify the KZM in the laboratory have, how-
ever, faced a variety of shortcomings, and,
while different aspects of the mechanism
have been confirmed, a definite test is still
missing (5). A remarkable step forward is
reported by Deutschländer et al., who used
colloidal monolayers as a test bed for uni-
versal critical dyamics with unprecedented
accuracy (6).
In a nutshell, the paradigmatic KZM pro-

vides a framework to describe the dynamics
across a continuous phase transition. At equi-
librium, the correlation length diverges as a
universal power law in the thermodynamic
limit when the critical point λc is approached
by tuning a control parameter λ, i.e., ξ=
ξ0=jejν\ with e= ðλc − λÞ=λc. The equilibrium
relaxation time exhibits a similar power-law
behavior, τ= τ0=jejzν ∝ ξz, that is respon-
sible for the critical slowing down and the
nonadiabatic character of the phase transi-
tion dynamics. Above, ν and z are critical ex-
ponents associated with the universality class
of the transition. An arbitrary time-dependent
modulation of λ= λðtÞ leading to a sponta-
neous symmetry breaking scenario can be
linearized around the critical point λc so that

λðtÞ ’ λcð1− t=τQÞ and eðtÞ ’ t=τQ, where
τQ is the quench time in which the transi-
tion is crossed. As illustrated in Fig. 1A, the
KZM exploits the adiabatic impulse approx-
imation to “chop” the evolution through the
phase transition in three sequential stages,
where the dynamics is quasi-adiabatic, fro-
zen, and quasi-adiabatic again, as the con-
trol parameter takes values λ � λc, λ≈ λc,
and λ � λc, respectively. The crossover be-
tween these stages occurs at the freeze-out
time t̂, when the equilibrium relaxation time
matches the time lagged after crossing the
critical point. This characteristic time plays
a key role in the KZM and already inherits
an imprint of universality, scaling with the
quench time as t̂ = ðτ0τQÞ1=ð1+νzÞ. The beau-
tiful insight behind the KZM is the estimate
of the average size of the domains by the
value of the equilibrium correlation length
at the freeze-out time, i.e., ξ̂= ξ½eð̂tÞ�. As a
result, the distance between topological de-
fects increases with the quench time follow-
ing a universal power law of the form
ξ̂= ξ0ðτQ=τ0Þ

ν
ð1+νzÞ, which is the main predic-

tion of the KZM. Despite the symmetry
ξ½eð−t̂Þ�= ξ½eð̂tÞ� within this simplified de-
scription, numerical simulations indicate that
+t̂ plays the dominant role in determining
ξ̂ (7). In addition, coarsening of domains can
already occur in the effectively frozen-out
stage for very slow ramps (8).
The quest for a conclusive test verifying

the KZM scaling faces the following major
challenges. Given that the mechanism uses
equilibrium properties of the system to ac-
count for the nonequilibrium dynamics, mea-
surements of the equilibrium correlation
length and relaxation time and the associ-
ated critical exponents (z and ν) are required
beforehand. Important deviations from the
power-law behavior are expected in finite-
size systems. Both the time modulation of
the control parameter and the system itself
should be spatially homogeneous. In ad-
dition, the range of available quench rates
in the laboratory should be wide enough
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Fig. 1. Schematic dynamics through a continuous phase transition as described by the Kibble−Zurek mechanism. (A) In
the neighborhood of the critical point, reached at time t = 0, the relaxation time diverges and effectively divides the
evolution in three sequential stages characterized by a quasi-adiabatic or effectively frozen-out dynamics. The equilibrium
value of the correlation length at the freeze-out time fixes the size of the domains in the broken symmetry phase.
(B) Across a continuous KTHNY phase transition, the KZM assumes fluctuations in the isotropic fluid phase to remain
frozen during subsequent stages, so that they determine the size of the domains in the resulting polycrystalline phase.
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to test the power-law KZM scaling over
several decades, preferably, far away from
the onset of adiabatic dynamics. Finally,
measurements of the domain sizes should
be reliable and performed before standard
coarsening and annihilation of topologi-
cal defects take place, hiding signatures of
universality.
Deutschländer et al. studied the universal

nonequilibrium dynamics induced by cooling,
at a tunable finite rate, a colloidal monolayer.
The phase transition under consideration
is made clear by the Kosterlitz−Thouless−
Halperin−Nelson−Young (KTHNY) theory
(9–11). At high temperatures, an isotropic
phase is found with short-range orientational
order and isolated disclinations. As the sys-
tem is cooled down below a critical temper-
ature Ti, pairs of dislocation are formed and a
hexatic phase emerges with quasi-long-range
orientational order. Upon further lowering
the temperature below a second critical value
Tm <Ti, the system enters a crystalline phase
characterized by binding of pairs of disloca-
tions. The three phases can be distinguished
by a complex order parameter for bond ori-
entation (10). In the crystalline phase, config-
urations with different global orientations are
degenerate. In the course of the evolution, this
symmetry is locally broken, resulting in a col-
lage of domains that form a polycrystalline
phase. Their average size can be predicted
by the KZM using the equilibrium scaling
theory above Ti; see Fig. 1B. This assumes
that the hexatic phase, being narrow in pa-
rameter space, can be ignored and that the
dynamics in the crystalline phase is down.
Apart from involving a two-step process,

the main peculiarity of the KTHNY univer-
sality class for the purpose of testing the KZM
is that correlation length and relaxation time
do not follow an algebraic divergence at
equilibrium but, rather, an exponential one,
e.g., ξ∼ expða=jej1=2Þ and τ∼ expðb=jej1=2Þ
with a > 0, b > 0, and e= ðTi −TÞ=Ti. This
behavior is predicted by renormalization
group (10). The scaling of the correlation
length has been experimentally investi-
gated (12). The relaxation time has been
considered in theoretical studies of hard
disks (13). The exponential equilibrium
scaling can be taken into account by suit-
ably modifying the KZM, and defining the
freeze-out time accordingly (14, 15). Regard-
ing the system size, the number of particles

studied by Deutschländer et al. was ∼5 × 103,
within a sample with over a hundred thou-
sand particles with an extension about a
hundred times the interparticle distance.
These parameters compare favorably to
other tests of the KZM (5). Moreover,
density gradients in the initial state were
suppressed by an exquisite control of the
horizontal inclination, and the authors
assessed that temperature gradients were ab-
sent as well.
The beads forming the colloid are super-

paramagnetic, and repulsive dipole−dipole

Deutschländer et al.
show that colloids
are an ideal platform
to advance our under-
standing of universal
dynamics in critical
systems.
interactions can be induced by applying an
external magnetic field. The control parame-
ter is the ratio of the magnetic energy to the
thermal energy, and its rate of change can be
tuned by nearly three orders of magnitude.
The ensuing overdamped nonequilibrium
dynamics was analyzed by video microscopy
with single-particle resolution that allows un-
precedented access to all stages of the phase
transition dynamics. The authors recorded

the evolution of the density of defects and
the domain size. The characteristic size of the
domains was studied as a function of the
quench rate, and remarkable agreement was
found with the KZM prediction ξ̂= ξ½eð−t̂Þ�,
when the dynamic critical exponent z was
used as a fitting parameter. This agreement
suggests that when the quasi-adiabatic dy-
namics break down, fluctuations in the initial
isotropic fluid freeze in and are preserved
across the phase transition, determining the
domain size in the resulting polycrystalline
phase. Measured data further show that the
domain size can be approximated by a power-
law only over a restricted range of quench
rates, and with rate-dependent critical ex-
ponents (14, 15). However, the KZM estimate
for ξ̂ holds even for the slowest cooling ramps
where deviations from a power-law behavior
in the density of defects are observed. The
large fitted value z= 4.5 should motivate
further analysis.
Overall, Deutschländer et al. (6) show

that colloids are an ideal platform to ad-
vance our understanding of universal dy-
namics in critical systems. A variety of excit-
ing prospects for future research can be
envisioned. Examples include the critical
dynamics of confined colloids across a
(zero-temperature) second-order phase tran-
sition (16), under inhomogeneous driving
(17–19), and in the presence of quenched
disorder (20).
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