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Glass transitions may be similar in two and three
dimensions, after all
Gilles Tarjusa,1

Understanding glasses and the glass transition is
widely accepted as a deep, mysterious, and funda-
mental problem. However, the consensus does not
extend much further. The topic is still hotly debated
and progress toward a commonly accepted resolution
seems slow for what is, after all, one of the oldest
puzzles in physics. New theoretical tools and predic-
tions do emerge, new phenomena are unveiled, and
clever experiments are nonetheless carried out. In this
vein, the two recent experimental papers in PNAS by
Vivek et al. (1) and Illing et al. (2) convincingly address
an issue at the junction of two fundamental questions
in glass physics: the role of the dimensionality of space
on the glass transition and the possible existence of
long-wavelength fluctuations in 2D amorphous solids.

Is the nature of the glass transition different in two
and three dimensions? Contrary to many ordering
transitions, such as crystallization, which are known to
be different in 2D and in 3D, there has been for some
time a loose form of consensus that the glass transition is
similar in 2D and 3D. As summarized in a pithy sentence
by P. Harrowell, “in Flatland, glasses reproduce all the
behaviour of their three-dimensional relatives” (3). The
rationale behind this is that the glass transition involves
no obvious long-range order or spontaneous symmetry
breaking. Actually, the experimentally observed glass
transition is not even a true phase transition. It is a kinetic
crossover, admittedly quite sharp, through which a liquid
that, upon cooling, has become too viscous to flow and
relax in a reasonable observation time (by anthropic stan-
dards) falls out of equilibrium. It then forms a glass, an
“amorphous” solid the structure of which looks as disor-
dered as that of the liquid before the crossover (4).

However, a clear blow to this assumed similarity came
from a recent comparative study of 2D and 3D model
glass-forming liquids by computer simulation. Flenner
and Szamel (5) showed that the dynamics of 2D glass-
formers is qualitatively different from that of their 3D
counterparts. As illustrated in Fig. 1, the translational mo-
tion of the particles proceeds differently in 2D and 3D.
Particles stay trapped for relatively long times in the
“cage” formed by their neighbors in 3D, which gives rise
to a plateau in the self-intermediate correlation function

(Fig. 1,Upper). On the other hand, they canmove sizable
distances along with their neighbors with little change of
their local structure in 2D (Fig. 1, Lower), which generates
a strongdependence on the system size.Quite strikingly,
in 2D but not in 3D, as one cools the system, the trans-
lational motion and the associated time-dependent
correlation functions appear to decouple from the mo-
tion of the particles involving a rearrangement of the
local environment. The latter can be detected through

Fig. 1. Self-correlation function of the density modes
Fs(k,t) versus time (log scale) in a 3D (Upper) and a
2D (Lower) glass-former for several temperatures T
(from left to right T decreases). (Inset) Trajectory plot
of one particle at the lowest T. The results are from
the computer simulation study of the Newtonian
dynamics of model glass-forming liquids in Flenner
and Szamel (5).
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“bond-orientational” correlation functions probing the orientational
change of the vector between two nearest-neighbor particles. The
authors then concluded that “glassy dynamics in 2D and 3D are
profoundly different” (5).

The two papers in PNAS (1, 2) first present a beautiful exper-
imental corroboration of the simulation results. To achieve this,
the two groups took advantage of the specific properties of soft
(colloidal) matter: the big size of the colloids (104 to 106 that of an
atom) allows visualization through an optical microscope and the
associated sluggish dynamics can be tracked and resolved in time,
all of this at a particle level.

Settling the dimensionality dependence has both practical and
fundamental benefits. On the practical side, if no major change of
the main physics takes place, reducing the dimensionality allows
more convenient investigations and easier visualization of particle
systems. At a fundamental level, space dimension can be used as
an additional “control” parameter to gain insight into a specific
physical phenomenon and disentangle the various mechanisms
that may be at play. Experimentally, this can be undertaken in
dimensions three, two, and sometimes one. In a more abstract
setting, theoretical physicists have come to consider (when pos-
sible) dimension as a parameter that can be continuously varied
and taken to infinity. This is, for example, a standard tool in the
theory of phase transitions and critical phenomena. In the limit of
an infinite number of dimensions, D→∞, a “mean-field” descrip-
tion, such as the Curie–Weiss theory of magnetism or the van der
Waals theory of fluids, often becomes exact. Fundamentally, this
stems from the suppression of spatial fluctuations in high dimen-
sions, which allows a reduction of the problem at hand to that of a
single constituent—for example, a particle or a spin—in the mean
field created by all others. However, when decreasing the dimen-
sion D, the role of the spatial fluctuations increases and in low
enough dimensions fluctuations become dominant and can even
wipe out the phenomenon of interest (see also below). In many
cases, the strong effect of fluctuations—and more to the point, of
long-wavelength ones—is well accounted for by the renormaliza-
tion group theory (6).

A mean-field theory of the glass transition (7) has recently been
established for fluids in the limit of an infinite number of dimen-
sions. It is an unusually complex and elaborate construction that
had been put forward before on less-rigorous grounds (8). In this
case, fluctuations are also expected to become more important as
dimension decreases and one reaches the physically relevant di-
mensions D = 3 and D = 2. However, the precise nature of the
relevant fluctuations remains elusive and their manifestation can a
priori take a variety of forms (9). What is demonstrated in Vivek
et al. (1) and Illing et al. (2) is that a new type of fluctuation seems
to emerge in D = 2, which may explain most of the observed
qualitative differences with glass formation in 3D.

To discuss the nature of the spatial fluctuations seen in 2D but
not in 3D glass-formers, it is useful to first make a detour by 2D
crystals. It was argued from heuristic arguments by Peierls (10) and
Landau (11), and then rigorously shown byMermin (12), extending
the earlier work of Mermin and Wagner (13), that there can be no
long-range positional order at any nonzero temperature in 2D and
less. Crystals in their conventional acceptation, therefore, do not
exist in 2D. The reason is that thermal fluctuations in the form of
long-wavelength density modes (acoustic phonons) lead to a di-
vergent mean-square displacement <Δr2> of the particles from
their equilibrium positions, thereby destroying long-range peri-
odic order. (Note that the argument applies to translational order
but does not prevent long-range bond-orientational order.) In 2D,

this divergence is logarithmically slow with the system size L,
<Δr2>∼T log(L/σ), where σ is the interparticle distance, which, as
pointed out by Landau and Lifschitz, implies in practice that “the size
of the film for which the fluctuations are still small may be very great”
(14). However, the fundamental importance of the result, namely that
long-wavelength fluctuations, which one may refer to as Mermin–
Wagner fluctuations, destabilize the crystal [and other forms of
long-range order as well (13)] in 2D, led Kosterlitz and Thouless to
establish the existence of a “long-range topological order” in such
systems (15), a far-reaching result that awarded them the Nobel Prize
in Physics in 2016.

A glass, on the other hand, is a solid only for times shorter than
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that for relaxation to equilibrium and, to make matter worse, it is
an amorphous solid that lacks periodicity. It has nonetheless been
suggested that Mermin–Wagner-like density fluctuations could
operate in 2D glass-formers. There is indeed some evidence that
at large scales beyond some characteristic length ξ, a glass be-
haves as a homogeneous elastic medium. The very same rea-
soning leading to the above divergence of the mean-square
displacement can be used with the interparticle size σ replaced by
the possibly larger length ξ. This result, however, can only be valid
for a limited duration because for elapsed times larger than the
typical relaxation time, the system should behave like a more
conventional viscous liquid. Nonetheless, this suggests that ves-
tigial Mermin–Wagner-like density fluctuations could affect the
dynamics of a 2D glass-former, more specifically the translational
motion of the particles.

A striking outcome of the two studies recently presented in
PNAS (1, 2) is the evidence they both give that long-wavelength
density fluctuations are indeed present in 2D glass-formers and
provide an additional channel for particle motion on top of the
generic “structural relaxation” involving irreversible rearrange-
ments of the local structure. This finding could explain why time-
dependent translational correlation functions change on a faster time
scale than correlation functions only sensitive to the rearrangements
of the local environment of the particles (the “cage”), such as bond-
orientational ones. The two studies also offer amore direct test. From
the knowledge of the individual particle trajectories, the authors com-
pute a variant of the translational correlation functions that is based
on the displacement of the particles measured relative to that of the
surrounding cage of neighbors. These new “cage-relative” functions
are expected to be less sensitive to the long-wavelength fluctuations
that cause a displacement of the particles along with their environ-
ment. In 2D, these functions indeed display a change in time that is
now slower than the conventional translational functions (1, 2), and
Illing et al. (2) give indications that the associated time scale is com-
parable to that of the bond-orientational functions. In contrast, the
cage-relative and conventional translational correlation functions are
not significantly different in 3D. Carefully analyzed, Flatland (2D)
studies could then, after all, provide insight into the generic features
of glass formation.
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These experimental results are clearly important for glass
physics. They are also stimulating as they raise new questions
and open avenues for further experimental and numerical
investigations. Among the fundamental issues triggered by the
studies in Vivek et al. and Illing et al. (1, 2) are the theoretical
foundations of these Mermin–Wagner fluctuations in 2D glass-
formers and the possible interference with other types of fluctua-
tions. As stressed above, the observed glass transition is not a
bona fide phase transition and notions such as rigidity and solidity
for glasses still require some more robust theoretical underpin-
ning. Whether the spectacular slowdown of dynamics upon cool-
ing (or increasing the concentration) is a collective phenomenon
controlled by some underlying but not observable phase transitions,
where some form of long-range order settles in, is nonetheless a
legitimate question. A quite different but complementary problem
than that addressed in Vivek et al. and Illing et al. (1, 2) is the nature of
the fluctuations that may destabilize these putative transitions and
the ensuing “lower critical dimension,” below which no such transi-
tion is possible as a result of too strong fluctuations. It is not at all clear
that these fluctuations are long-wavelength density modes, as found

in Vivek et al. and Illing et al. (1, 2), nor thatD = 2 should then be the
lower critical dimension.

The strength of the soft-matter systems studied in Vivek et al.
and Illing et al. (1, 2), with big and slow colloidal particles that one
can track in space and time at an individual level, comes with a
down side for what concerns glass formation. The slowing down of
dynamics with decreasing temperature or increasing concentra-
tion cannot be probed over more than four to five orders-of-mag-
nitude in relaxation time (much like computer simulation studies
of liquid models). This should be contrasted with molecular glass-
forming liquids for which a variation of the viscosity or the relax-
ation time of up to 14 or 15 orders-of-magnitude can be accessed.
If glass formation involves the growth of spatial correlations of one
sort or another beyond the mere interparticle distance, these cor-
relations should be less pronounced in colloidal systems than in
molecular liquids approaching their glass transition. How the var-
ious, possibly intertwined or competing, fluctuations affect the
dynamics in the deeply supercooled—that is, highly viscous—regime
of 2D glass-formers not accessible to colloidal systems then remains
an open question.
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