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Tracking shear mode dynamics across the glass transition in a two-dimensional colloidal system
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Long-wavelength collective shear dynamics are profoundly different in solids and liquids. According to the
theoretical framework developed by Maxwell and Frenkel, collective shear waves vanish upon melting by acquir-
ing a characteristic wave-vector gap, known as the k gap. While this prediction has been supported by numerous
simulations, experimental validation remains limited. Moreover, this phenomenon has never beentested across
a continuous glass transition between a liquid phase and a glassy state with large but finite viscosity. In this
work, we track the dispersion relation of collective shear modes in a two-dimensional colloidal system and
provide direct experimental evidence for the emergence of a k gap. This gap opens continuously at an effective
temperature consistent with the onset of the glass transition and the vanishing of the static shear modulus.
By extracting the instantaneous shear velocity from the experimental data, we uncover a shear relaxation
time exhibiting a super-Arrhenius temperature dependence characteristic of glass-forming materials, accurately
described by the Vogel-Fulcher-Tammann relation. Our results confirm the predictions of the Maxwell-Frenkel
framework and highlight their relevance across continuous melting processes originating from low-temperature

amorphous solid phases.
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I. INTRODUCTION

At low wave vectors, collective shear dynamics in solids
are governed by propagating shear waves (phonons), with
their speed determined by the static shear modulus [1]. In
contrast, in liquids, these dynamics are dominated by diffusive
processes governed by the finite shear viscosity [2].

Within the theoretical frameworks established by Maxwell
and Frenkel [3], the transition between these two regimes is
governed by the telegrapher equation:

w%—l—ia)T/r =v%k>, €))]

where wr is the frequency of collective transverse excitations,
k the wave vector, v the instantaneous speed of sound, and
T a characteristic relaxation time. In Frenkel’s microscopic
picture of liquid dynamics [4], T represents the average time
a particle takes to hop over potential barriers, which can be
related to the lifetime of local atomic connectivity [5]. In
contrast, Maxwell’s theory [6] identifies T as the Maxwell
relaxation time t)s, which characterizes the macroscopic vis-
coelastic response of the medium and is formally defined as
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the ratio between the shear viscosity 7 and the instantaneous
shear modulus G, i.e., Ty = 11/ Go.

Equation (1), which arises in a wide range of physical
systems [7], predicts that collective shear excitations in liquids
exhibit a characteristic dispersion:

Re(wr) = v, /k? — kg, 2)

where k; = 1/(2v7) is the so-called k gap, characterizing the
inverse length scale below which elastic response persists.
This relation, Eq. (2), is well established and can be formally
derived using several methods, including generalized hydro-
dynamics (see Chap. 6 in Ref. [8]). In the long-wavelength
limit, kK < kg, Re(wr) = 0 and the dynamics are liquidlike
(diffusive). In the other limit, k > k,, solidlike response and
propagating shear waves emerge also in liquids. This reflects
the high-frequency shear modulus that makes diving from a
10-m platform so exciting, while swimming gently through
water remains so relaxing.

Although the precise definition of t in Eq. (1) remains
debated, it is generally expected that k, vanishes in crystalline
solids, where the wavelike transverse phonon dispersion wy =
vk dictated by elasticity theory is recovered. This follows di-
rectly from the fact that, in crystalline solids, T — 00, because
the shear viscosity formally diverges. On the other hand, the
behavior of k, across a continuous glass transition between a
supercooled liquid and a glassy phase is more subtle. Since the
viscosity in the glassy state does not diverge sharply, as it does
across a first-order solidification transition, the corresponding
kgap is expected to approach zero continuously.
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FIG. 1. (a) The dispersion of collective shear modes as a function of the normalized wave vector ka for I = 423, deep in the amorphous
glass phase. White symbols are the value of Q7 (k) obtained by fitting the dynamical transverse structure factor Sr(k, @) with a damped
harmonic oscillator (DHO) function and the error bars indicate the corresponding linewidth I'(k); green symbols are the position of the
maxima in Sy (k, w); and blue symbols are the eigenvalues w; obtained by diagonalizing the transverse sector of the dynamical matrix D(k).
The background color is the absolute value of S7(k, w) in a 10-based logarithmic scale. The inset shows an image of the experimental setup.
(b) Similar analysis for I' = 152, slightly below the expected glass transition temperature, in the liquid phase. The inset shows an example of
the fit of the dispersion relation using the k-gap equation, Eq. (2), with the horizontal dashed line indicating the cutoff frequency wp, arising
because of the finite-size system. (c) Same analysis for I' = 64, deep in the liquid phase. The inset shows the value of the pair correlation

function g(r) for different values of I'. The glass transition temperature for this system has been estimated to be around I', &~ 195 [9].

Since the initial validation of these theoretical predictions
in simulated molecular liquids and supercritical fluids [10],
the k-gapped behavior described by Eq. (2) has been observed
across a wide range of simulated systems, confirming its uni-
versality with respect to interparticle interactions (see Ref. [3]
for a review).

On the other hand, experimentally verifying this mecha-
nism in molecular liquids remains challenging due to limi-
tations of current techniques in accessing the low-frequency,
low-wave-vector regime. In Ref. [11], the emergence of a
cutoff wave number k, in the liquidlike phase of a two-
dimensional (2D) Yukawa dusty plasma was observed and
estimated as k,a ~ 0.16-0.31, where a is the 2D Wigner-Seitz
radius. More recently, Jiang et al. [12] reported the existence
of a k gap in the dispersion of collective transverse excitations
in the liquidlike phase of athermal vibrated granular matter.
However, in both cases, the disappearance of the wave-vector
gap at the onset of solidification was not clearly demonstrated.

It is worth noting that the concept of a phonon gap has been
previously discussed both theoretically and experimentally in
various contexts, including liquids, lipid membranes, and bio-
logical systems [13—15]. However, whether this mechanism
remains valid across a continuous glass transition from an
amorphous solid to a liquid remains an open question that,
to the best of our knowledge, has not yet been investigated.
This is the main scope of our work.

We notice that, despite the fact that full dispersion of shear
waves across a glass transition has never been analyzed ex-
perimentally, the appearance of high-frequency shear waves
across T, has been verified experimentally using Brillouin
scattering [16]. The purpose of our analysis is to resolve the
concrete dynamics behind this phenomenon and, thanks to
the ability of probing low enough frequencies and wave vec-
tors, to probe the full dispersion relation of shear fluctuations
across this continuous transition.

II. EXPERIMENTAL SYSTEM AND DATA ANALYSIS

Here, we study a two-dimensional colloidal glass com-
posed of a binary mixture of superparamagnetic polystyrene
spheres confined to a flat water-air interface [17] [see the inset
of Fig. 1(a) for an image of the experimental setup]. The small
and large particles have diameters of oy = 2.8 um and o;, =
4.5 um, respectively, with a mixing ratio of Ng:N; = 45:55.
Particle number is about 2300 in the field of view, while the
monolayer consists of about 100000 particles in total. The
particles interact via a tunable magnetic dipole-dipole interac-
tion, controlled by an external magnetic field and quantified
by a dimensionless coupling parameter I", which serves as
an effective inverse temperature. More precisely, our control
parameter is given by

H2(rn)3/?
o Mo H(mn)

2
= kT Exs+A=8)x),

3)
where H is the external magnetic field, o the vacuum
magnetic permeability, T the temperature, & the relative con-
centration of small particles, n the two-dimensional number
density, and xs ; the magnetic susceptibility of small and large
particles, respectively.

Particle positions are tracked over time using video mi-
croscopy and digital image analysis [18]. This method, made
possible by the mesoscopic size of our colloidal particles,
overcomes the significant limitations of scattering techniques
used in molecular liquids. These limitations are among the
main reasons why the k gap has never been convincingly
demonstrated experimentally in those systems. The elastic
properties of this experimental system have been thoroughly
investigated [19], with evidence suggesting the onset of a glass
transition at I', ~ 195 [9].

Following Ref. [19], we define the particle displacement
u;(t) =r;(t) — t;, where r; is the average position of the
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particle i € [1, N] during a time interval At &~ 18900 s. Con-
sistent with the analysis in Ref. [19], the time interval is
chosen to be sufficiently large such that the shear modulus
vanishes in the liquid phase, thereby avoiding short-time elas-
tic effects that are also present in liquids. We then derive the
“dynamical matrix,” mapped via the equipartition theorem to
the squared displacements, D(k) = kBT(ultuk)’l, where uy
is the Fourier transform of the particle displacement in terms
of the wave vector k and (-) indicates time average. More
specifically, the displacement field at each time frame in the
dataset is calculated first, and then the Fourier transform and
Helmbholtz decomposition are performed to separate the lon-
gitudinal and transverse dispersion, after which time average
is performed over approximately 6000 time frames to find the
corresponding eigenvalues.

The eigenvalues A (k) of the dynamical matrix correspond
to the squared eigenfrequencies of the system w?(k) and pro-
vide the spectrum of excitations in the harmonic limit [20].
Being overdamped by the solvent, the modes decay exponen-
tially. The frequency w; of the modes is that of a “shadow
system,” where the solvent is absent but particle configuration
and interactions remain unchanged [20].

From the mode analysis, we compute the transverse dy-
namical structure factor Sy (k, w),

k2
Srlk, @) o — 3 By 7 ()@ — ), “)
A
where
2
E (k) =|) (kxe(j)explik-r))| . )
J

Here, r; is the position of the ith particle, e, (j) is the eigen-
vector corresponding to eigenfrequency w;, and k = k/|Kk|.
To improve the statistics, we average St (k, @) over different
k orientations.

II1. RESULTS

In Fig. 1, we present the experimental dispersion relation
of collective shear modes as a function of the dimensionless
wave vector ka, where a is the average interparticle distance
~22 um [see inset of Fig. 1(c)], for several representative val-
ues of the control parameter I, spanning from deep within the
amorphous solid phase [panel (a)] to the liquid phase [panel
(c)]. The background color map shows the absolute value of
the transverse dynamical structure factor Sy (k, w), plotted on
a logarithmic scale to enhance contrast and visibility.

Blue filled symbols indicate the eigenvalues obtained by di-
agonalizing the dynamical matrix D (k). Green symbols mark
the location of the maxima in S7 (k, ) along constant-k cuts.
Finally, the white symbols represent the dispersion relation
Q7 (k) extracted from DHO fits to Sy (k, ),

?T'r (k)
(0? — Q2(k))" + T (k)

Sr(k, w) x 6)

The error bars in Fig. 1 indicate the relative linewidth I'7 (k).
We first observe that the three independent methods yield
consistent results for the dispersion of collective shear modes

in the solid phase. On the other hand, some deviations are
observed in the liquid phase in the large wave-vector limit
due to the increased sound wave damping. More importantly,
we note a progressive evolution in the form of the dispersion
relation from panel (a), corresponding to I' = 423, to panel
(c), which corresponds to I = 64.

In the amorphous solid phase [panel (a), I' = 423], shear
modes exhibit a wavelike, propagating dispersion, consistent
with predictions from elasticity theory and previously investi-
gated in detail in Ref. [19]. In panel (b), at ' = 152, slightly
below the reported glass transition point I'y &~ 195, in the
liquid phase, the dispersion relation undergoes a qualitative
change at small wave vectors (ka < 0.5), where the emer-
gence of a gap, consistent with Eq. (2), becomes apparent.

This feature becomes even more pronounced in panel (c),
deep in the liquid phase (I' = 64), where the k gap is clearly
visible and larger than that in panel (b). This trend supports
the formation of a wave-vector gap in the dispersion of col-
lective shear modes as the system transitions from the high-I"
amorphous solid to the low-I" liquid. This transition is further
corroborated by the behavior of the pair distribution function
g(r) shown in the inset of Fig. 1(c), which reflects the struc-
tural changes across the glass transition.

After validating the emergence of a gap in the dispersion
of collective shear modes with decreasing control parameter
I', we extended our analysis to a broader range of I" values,
spanning those shown in panels (a)—(c) of Fig. 1. For each
case, we extracted the corresponding dispersion relation and
fitted the low-k region using the k-gap equation, Eq. (2). An
example of this fitting procedure is presented in the inset of
Fig. 1(b) for I' = 152. We emphasize that due to the finite
size of the experimental system, there exist lower bounds for
both the wave vector and the frequency, denoted as kpi, and
®min, respectively. These cutoffs can be directly estimated
and must be properly accounted for in the analysis (see more
details in the Appendix). In the inset of Fig. 1(b), ki, has
been subtracted from the values on the x axis, while wp;, 1S
indicated by a dashed horizontal line. Notably, this line aligns
well with the frequencies observed in the low-k experimental
data below the k gap.

This analysis allowed us to determine the wave-vector gap
k,, the instantaneous shear velocity v, and the shear relaxation
time t as a function of I.

In panel (a) of Fig. 2, we show the values of the wave-
vector gap k, as a function of ~T'~!, which is proportional
to the temperature 7 [Eq. (3)]. We observe that k, diminishes
by increasing I" toward the amorphous solid phase and drops
rather quickly to approximately vanishing values around I' &
190, a value that is consistent with the estimated glass tran-
sition temperature I'g = 195 £ 5 [9]. In the amorphous solid
phase, k, vanishes up to the numerical accuracy and the finite-
size effects of our data. We note that the extracted values of
the k gap fall within the range k,a € [0, 0.8] for the I' values
explored. This range aligns remarkably well with values ob-
served in other systems featuring vastly different interparticle
interactions and particle sizes, suggesting a possible underly-
ing universality, as originally proposed in Ref. [21].

By fitting the experimental data with Eq. (2), we extract
the instantaneous shear velocity v, which is directly related
to the instantaneous shear modulus G, as a function of I".
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FIG. 2. (a) The propagation gap for collective shear excitations
k, in units of the Wigner-Seitz radius as a function of the inverse
I" parameter, proportional to the temperature of the system. In both
panels, the vertical white region indicates the previous estimates
of the glass transition I'y = 195 & 5 [9]. k, vanishes in a range of
I' consistent with the onset of the glass transition. (b) Normalized
instantaneous speed of collective shear waves v as a function of the
inverse I parameter, where the normalization is with respect to the
maximum value of the instantaneous speed.

The results, shown in Fig. 2(b), reveal that v remains finite in
both the amorphous solid and liquid phases but is significantly
larger in the solid. Deep in the liquid state (small I") and deep
in the solid state (large I'), v varies only weakly with I". In
contrast, a sharp crossover appears near the glass transition, at
g & 195 &£ 5 [9], where v rapidly drops from its solidlike to
liquidlike value.

Combining the extracted values of k, and v, we determine
the shear relaxation time T = 1/(2k,v) as a function of I'. The
experimental data for 1/t versus I'"! are shown in Fig. 3.
We find that 1/t remains finite in the liquid phase but drops
sharply as the glass transition is approached, signaling a rapid
growth of the shear relaxation time. Below the glass transition,
in the amorphous solid state, 1/t is essentially zero within
experimental accuracy. Assuming that T corresponds to the
Maxwell timescale ~n, this behavior reflects the dramatic in-
crease of the shear viscosity at and below the glass transition.

To describe this behavior theoretically, we use the
well-established VFT equation, which captures the super-
Arrhenius temperature dependence of relaxation times in
glass formers. Noting that I'"! o T, we fit the experimental

data for t with
A < B ) @)
T=Aexp| ————— ),
P r-t—r,!

at which 7t formally diverges, often identified with the ideal
glass transition.

As shown in Fig. 3, the experimental data for 1/t are
consistent with the super-Arrhenius behavior described by the
VFT equation, Eq. (7). In particular, our best fit gives

A =034, B=0.0006, T(="200. 8)
This implies that the Vogel temperature is, as expected,
slightly (around 3%) below the glass transition temperature.

This analysis reveals that the shear gap k, approaches zero
continuously across the glass transition, consistent with the
abrupt but continuous growth of the shear viscosity n to-
ward the glass transition. Moreover, this continuous trend is
well captured by a super-Arrhenius increase of the relaxation
time, consistent with the VFT equation characteristic of glass-
forming materials.

IV. OUTLOOK

In summary, we have presented experimental evidence for
the emergence of a wave-vector gap in the dispersion relation
of collective shear modes across the glass transition in a two-
dimensional mesoscopic colloidal system. In the liquid state,
the form of the dispersion is consistent with predictions from
Maxwell-Frenkel theory, and the onset of the k gap coincides
with the glass transition, as independently determined from
the vanishing of the static shear modulus.

This shear gap vanishes continuously as the glass transition
is approached, mirroring the sharp yet continuous growth of
the shear viscosity near T,. The experimental data are con-
sistent with a super-Arrhenius temperature dependence of the
shear relaxation time, inferred from the shear gap and well
described by the VFT equation. They further yield a rough
estimate of the Vogel temperature, slightly below previously
reported values for the onset of the glass transition.
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Our findings not only provide direct experimental confir-
mation of existing theoretical predictions, but also suggest that
this framework remains valid beyond conventional first-order
solid-liquid melting, extending into continuous glass transi-
tion and very likely also 2D melting scenarios.

In the future, it would be interesting to independently
measure the viscosity of our experimental system and verify
directly the behavior of the shear relaxation time t obtained
indirectly in Fig. 3.
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APPENDIX: ON THE MINIMAL FREQUENCY
AND WAVE VECTOR

Due to finite-size effects, the minimum wave vector acces-
sible in our analysis is

1 1
kmin = 27 B + 2 (AT)
x y

where L, and L, denote the linear dimensions of the L, x L,
observation window used in the experimental analysis.

The corresponding minimum frequency is related to this
wave vector through @min = vVkmin, Where v is the speed of
sound in the system. The effects of these finite-size cutoffs,
kmin and wpiy, are illustrated in Fig. 4, where they are indicated
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FIG. 4. White symbols denote the transverse dispersion relation
extracted from the experimental data, together with the correspond-
ing error bars. The vertical and horizontal dashed lines indicate the
cutoff values wpi, and ky,, respectively, as determined in the Ap-
pendix. The red lines show fits to the gapped dispersion relation given
in Eq. (2), performed exclusively within the green shaded region.

by dashed lines. For sufficiently large values of I' in the
solid phase, the experimental data are consistent with a linear
dispersion relation of the form

® — Wmin = V(k — kmin),

confirming the validity of our estimates for these two scales.

In the main text, the analysis of the shear-excitation disper-
sion is therefore restricted to the range @ > @y and k > kyin,
highlighted by the green shaded region in Fig. 4.
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