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We report the specific heat cN around the melting transition(s) of micrometer-sized superparamagnetic
particles confined in two dimensions, calculated from fluctuations of positions and internal energy, and
corresponding Monte Carlo simulations. Since colloidal systems provide single particle resolution, they
offer the unique possibility to compare the experimental temperatures of the peak position of cNðTÞ and
symmetry breaking, respectively. While order parameter correlation functions confirm the Kosterlitz-
Thouless-Halperin-Nelson-Young melting scenario where translational and orientational order symmetries
are broken at different temperatures with an intermediate so called hexatic phase, we observe a single peak
of the specific heat within the hexatic phase, with excellent agreement between experiment and simulation.
Thus, the peak is not associated with broken symmetries but can be explained with the total defect density,
which correlates with the maximum increase of isolated dislocations. The absence of a latent heat strongly
supports the continuous character of both transitions.
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KTHNY theory, a microscopic melting scenario for two-
dimensional solids developed by Kosterlitz, Thouless,
Halperin, Nelson, and Young [1–3], motivated extended
analytic theories [4–8], numerous experimental studies
[9–24], and simulations [25–44] to clarify the detailed
melting mechanism and the order of phase transitions
in two dimensions. The KTHNY melting is mediated by
the dissociation of two kinds of topological defects,
dislocations and disclinations. This scenario predicts two
continuous phase transitions, where translational and ori-
entational order is broken at different temperatures by
the unbinding of pairs of dislocations and disclinations.
In a triangular lattice, a disclination is a five- or sevenfold
oriented site and a dislocation consists of oppositely
charged disclinations, namely, a pair of bound five- and
sevenfold sites. Both types of topological defects can be
treated as a Coulomb gas obeying a logarithmic interaction
potential in two dimensions [45]. For the dislocation
unbinding, a vector charge description becomes necessary
due to the directional character of the defects. The self-
screening of the vector gas is taken into account by a
renormalization group analysis. A scalar gas of charged
defects describes the disclination unbinding in a second
step. The intermediate thermodynamic phase is named
hexatic. Several experiments [12–15,18–22] and simula-
tions [25–33] clearly show the existence of the hexatic
phase, but some studies additionally report first-order
characteristics [16,35–40] versus continuous order
[18,19,22]. Continuous solid-hexatic and first-order hex-
atic-isotropic characteristics have been observed for hard
discs [41]. Alternatively the two-step melting can be
preempted by a single first-order transition when the pair
potential contains two length scales [42,43]. It has been

suggested that the nature and number of transitions in two
dimensions either depends on the dislocation core energy
[6,34] (which might implicitly depend on the particle pair
interaction being short or long range) or the angular
stiffness of the crystal being lower than a critical value [8].
While first-order phase transitions are known to show a

discontinuity in the free energy and a δ-like divergence in
the specific heat at the transition temperature, the defect
free energy and specific heat of the two-dimensional
Coulomb gas have only discontinuities and no divergence
for both transitions [2,46,47]. Thus, the behavior of the
specific heat can be used to identify the order of the
transition. On the experimental side, there have been only
calorimetric measurements so far, e.g., on atomic mono-
layers on graphite which show different results concerning
the number of peaks in the specific heat, their position
and magnitude [48–52]. These experiments lack a precise
determination of symmetry switching points, leaving the
correlation to occurring phase transitions still elusive.
Simulations of interacting dislocations show that for small
dislocation core energies, the specific heat has a large
discontinuity consistent with a first-order transition while
for large core energies, a single moderate peak was
observed, pointing to a continuous character [34].
Laplacian roughening models [26] (which are dual to
2D melting) and Lennard-Jones systems [33] display one
nondivergent peak along the two-step KTHNY scenario
whereas a nonideal Yukawa system shows two singularities
associated with two transitions [53]. However, in contrast
to the atomic or molecular systems mentioned above,
microscopy of individual particles in colloidal systems
allows a direct comparison between specific heat and
symmetry switching points.
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In this work, we present a melting study of super-
paramagnetic colloidal spheres confined in two dimensions
and corresponding Monte Carlo simulations. The precise
knowledge of the particle pair potential together with high
precision single particle resolution and long term stability
of the sample allows us to measure an anomaly in the
specific heat and compare it with simulations. Using order
parameter correlation functions, we confirm in the experi-
ments and simulations the two-step KTHNY melting
scenario from a solid phase through a hexatic fluid to an
isotropic fluid, yet we find a single peak in the specific
heat. Remarkably, this peak does not coincide with either
transition temperature but lies within the hexatic phase.
We show that it is connected to a sharp increase of the
number of topological defects associated with a progressive
unbinding of dislocation pairs on heating above the solid-
hexatic transition temperature. Further, we do not find an
additional peak correlated to the disclination unbinding
which might not be resolvable due to the very small
concentration of single disclinations < 5‰ in the back-
ground of a large overall defect density at the hexatic-
isotropic transition.
The experimental system consists of an ensemble of

spherical superparamagnetic polystyrene beads, with diam-
eter d ¼ 4.5 μm and mass density 1.7 kg=dm3, dissolved
and sterically stabilized with sodium dodecyl sulfate in
water. The colloidal suspension is sealed in a millimeter
sized glass cell where sedimentation leads to the formation
of a monolayer (> 105 particles) on the bottom glass plate.
The whole sample is under steady control and stable for
more than 20 months which allows sufficient equilibration
times and provides ideal sample conditions, e.g., vanishing
density gradients or drifts. The ensemble is kept at room
temperature and a highly homogeneous, finely tunable
external magnetic field H perpendicular to the colloidal
layer induces a repulsive dipole-dipole interaction between
the particles. This is quantified by the inverse system
temperature that is defined as the ratio of the mean
magnetic energy between two neighboring particles Emag
and the thermal energy,

Γ ¼ Emag

kBT
¼ μ0ðπnÞ3=2ðχHÞ2

4πkBT
; ð1Þ

where n ¼ 1=a20 is the 2D particle density with the mean
particle distance a0 and χ the magnetic susceptibility of the
beads. We assume an error of Γ� 0.5 due to density and
room temperature fluctuations during the measurements.
After changing the interaction strength, the system is
equilibrated for at least 24 hours before ≈3000 particles
are monitored and tracked by video microscopy. Previous
studies of this system have shown excellent agreement with
the KTHNY melting scenario [13–15,18,22,23].
In addition, standard Monte Carlo simulations are run in

an ensemble with constant particle number, volume, and

temperature (NVT ensemble), with N ¼ 2500 particles
interacting with a dipolar potential: βVðrÞ ¼ Γ=r3, with
distances measured in units of ðπnÞ−1=2. The interactions
are cut off at Rcut ¼ 9a0, which is large enough to avoid
effects from the truncation [29]. The system is simulated in
a rectangular box with a size ratio 2∶

ffiffiffi

3
p

and a (hard disc)
2D area fraction ϕ ¼ 0.07 to mimic the experimental condi-
tions. Cycles of increasing Γ from the fluid to the crystal,
and subsequent decrease to the fluid again were used to
confirm that there is no hysteresis within our Γ resolution.
To determine the respective symmetry breaking tem-

peratures, we analyze the spatial correlation function
g6ðrÞ ¼ hψ�

6ðrÞψ6ð0Þi of the orientational order parameter
ψ6 ¼ 1

nj

P

k exp ði6θjkÞ, where the sum runs over all nj
nearest neighbors of particle j, and θjk is the angle of the
kth bond with respect to a certain reference axis. According
to the KTHNY theory, g6ðrÞ approaches a constant value
in the solid phase (long-range order), decays algebraically
∼r−η6 in the hexatic fluid (quasi-long-range), and expo-
nentially ∼e−r=ξ6 in the isotropic fluid (short-range), with
an orientational correlation length ξ6. The orientational
exponent η6 is inversely proportional to the orientational
stiffness of the system: infinite in the solid, zero in the
isotropic fluid, and finite in the hexatic phase, approaching
a value of η6 ∼ 1=4 at the hexatic-isotropic transition [2,18].
This behavior of g6ðrÞ has successfully been probed
and verified in experiments [13,18–21] and simulations
[27,29–32]. The results for our system are shown in Fig. 1:
for both experiment and simulation, we clearly observe the
characteristic behavior of g6ðrÞ for the different phases,
verifying the stability of the orientational quasi-long-range
ordered hexatic fluid. For the solid-hexatic transition,
we find the (inverse) transition temperatures Γexp

m ≈ 70.3
and Γsim

m ¼ 69.25 and for the hexatic-isotropic transition
Γexp
i ≈ 67.3 and Γsim

i ¼ 68.25 [54]. These values are
extracted from Fig. 1. Since the solid-hexatic transition
is more difficult to locate by means of g6ðrÞ, we present
a finite-size analysis of the translational order parameter
and the 2D Lindemann parameter in the Supplemental
Material confirming these values [55]. It is well known that
the width of the hexatic phase is affected by the system size
which might explain the small differences in the melting
temperatures in experiment and simulation.
Within KTHNY theory, the specific heat is inversely

proportional to diverging correlation lengths (with well-
defined critical exponents) and shows no divergence but
only an essential singularity at both transitions [2,47]. In
the context of simulations, it has been discussed whether
these singularities might appear as a more or less pro-
nounced “bump” whose location and shape is strongly
model dependent or not detectable at all [46]. In what
follows we prove that the characteristics of the specific heat
as a function of temperature can indeed be explained with
the defect density, as suggested by Katherine Strandburg
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[46]. The energy of both dislocations and disclinations is
described with an elastic (logarithmic) part above a cutoff
radius acore. Below acore ≈ a0 the continuum elastic
description fails and the energy is given by a discrete
value Ecore [2,3,64]. During melting, at least this core
energy has to be provided for the dissociation of disloca-
tions and disclinations.
From the data, the specific heat cN per particle and

at constant volume can be calculated via the derivative of
the internal energy with respect to temperature (inverse Γ)
or from energy fluctuations (see the Supplemental
Material [55]),

cN ¼ 1

N
∂hEi
∂T ¼ −kBΓ2

∂ð ~E=ΓÞ
∂Γ ¼ hE2i − hEi2

NkBT2
; ð2Þ

where E is the total internal energy of the N-particle
system, the brackets denote a time average, and ~E ¼
hEi=NkBT [65]. The results are shown in Fig. 2: summing
up the energy, the cutoff is set to 15a0 for the experiment

(a)

(b)

(c)

(d)

FIG. 2 (color online). Filled symbols correspond to experiment,
open symbols to simulation. (a) Specific heat cN=kB as a function
of Γ calculated via the derivative approach. The inset shows the
energy per particle. (b) cN=kB for experiment (right side of the
right scale) and simulation (left side of the right scale) from
energy fluctuations and the total defect number density (left
scale), counting all defects (ρ) and isolated disclinations (ρdisc).
(c) and (d) The behavior of isolated dislocations and disclinations
analyzed with tanh fit to show the steepest increase. The back-
ground color of (b),(c),(d) is organized as follows: the solid and
isotropic fluid found by the experiment are colored blue and red
(dark gray), respectively. The hexatic phase is colored green
(light gray). The color gradient shows the estimated error in
determining the transition temperatures.
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FIG. 1 (color online). Spatial orientational correlation g6ðrÞ ¼
hψ�

6ðrÞψ6ð0Þi at different system temperatures Γ for experiment
(a) and simulation (b). The data are plotted on a log-log scale in
reduced coordinates, where a0 ¼ ðnÞ−1=2 is the mean particle
distance in the respective system. The decay behavior of g6ðrÞ has
distinct characteristics in the solid (constant), the hexatic fluid
(algebraic decay), and in the isotropic fluid (exponential decay).
An algebraic exponent of −1=4 marks the hexatic-isotropic
transition [2].
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and 9a0 for the simulation (further discussion of the cutoff
dependency can be found in the Supplemental Material
[55]). Within the simulations, the calculation of cN from
the derivative of the energy [Fig. 2(a)] and its fluctuations
[Fig. 2(b)] agree almost quantitatively and show a single
peak at Γsim

cN ¼ 68.5 due to a single change of slope in
the energy (inset). In the solid phase we observe a value
of cN in agreement with the Dulong-Petit law cN ¼ 4

2
NkB,

predicting the heat capacity of a two-dimensional mon-
atomic crystal [horizontal line in Fig. 2(a)]. For the
experiments, the calculation from the derivative of the
energy is too noisy (see the Supplemental Material [55]),
and a reliable value can be obtained only from the energy
fluctuations [Fig. 2(b)]. We find again a single marginal
peak at Γexp

cN ≈ 68.4, very close to the value of the
simulations. (Note, however, the different scale for
experiment and simulation of cN . As discussed in the
Supplemental Material [55], an increased peak height and
baseline can be attributed to additional density fluctuations
picked up in the experiment. Nevertheless, those “mechani-
cal” fluctuations do not affect the peak position.) The
(inverse) temperature ΓcN of the specific heat peak lies
within the hexatic phase below the melting temperature Γm
from solid to hexatic (ΓcN < Γm or TcN > Tm), both in the
experiments and simulations. A second peak is not detect-
able. This is unexpected, given the picture of the KTHNY
theory which predicts two specific heat discontinuities
(eventually marginal) located at the transition temperatures
[2]. Already in the 1950s, a shift of the specific heat peak in
2D systems has been reported for quantum fluids like 4He
films, whose position is found at higher temperatures with
respect to the onset of superfluidity [66,67]. The authors
put this on the increasing importance of surface excitations
with reduced film thickness. de Gennes (comment in [67])
pointed out that the temperature onset of superfluidity
might be caused by short-range-order effects which become
important in one- and two-dimensional salts [68,69]. Later,
Kosterlitz and Thouless [1] considered this effect for the
neutral superfluid in 2D. Berker and Nelson [70] gave
analytic evidence for a specific heat shift for superfluid
films of 3He-4He mixtures, and explained this with the
gradual unbinding of vortex pairs with increasing temper-
ature while the maximum in the specific heat occurs
when the mean separation of vortex pairs is comparable
with the vortex core size. A shift of the peak to higher
temperatures has also been reported in simulations of
planar models [71–73] and 2D solids [26,33,34].
To explain the shift in the specific heat peak, we

investigate the defect distributions on single particle level.
We analyze the total number density ρ of defects [all not
sixfold coordinated sites, Fig. 2(b)] as well as the density of
isolated dislocations and disclinations for both, experiment
[Fig. 2(c)] and simulation [Fig. 2(d)]. (Note, that one
dislocation consist of two defects.) In the region of the
peak, the overall defect density ρ undergoes a significant

increase from ≈5% to ≈20%. Energy costs which become
apparent in the specific heat should directly be connected
to the core energy due to the creation and dissociation of
defects. cN should peak where the increase of defects is
largest (which is not at Γm). This can clearly be seen from
the simulations where the sharpest increase of ρ is exactly
at the peak position Γsim

cN ¼ 68.5ðΔρ ≈ 0.1Þ. With the total
defect increase ΔNdef ≈ 220 at this interaction strength,
we can make a rough estimate for the simulation peak
height via the the dislocation core energy in the hexatic
phase Ec ≈ 5.5kBT [64] yielding cN ≈ 30kB (see the
Supplemental Material [55]). The defect density in the
experiment, on the other hand, shows a rather broad
increase. It must be noted that our analysis includes all
kinds of defects, even cluster conformations which earliest
occur in the hexatic phase. KTHNY theory does not
account for such cluster but assumes a dilute gas of defects.
But clustering at finite defect densities is quite natural
due to the attractive interaction of the defects. Counting
all (including clustered) dislocations, the peak height is
already overestimated compared to the measurements.
Implicitly, this means that such clustered dislocations seem
to have a significantly reduced core energy Ec < 5.5kBT.
We checked that such a cluster consists only of an equal
amount of five- and seven-folded particles in the hexatic
phase: clusters are dislocation cluster (with small core
energy) but not a dislocation-disclination cluster. The latter,
with an unequal number of five- and seven-folded particles,
are only observable quite deep in the isotropic phase. Thus,
we focus on the isolated topological defects that drive
the transitions within KTHNY theory: isolated dislocations
show their sharpest increase in density below Γm but very
close to the peak position (Γexp

disl ≈ 68.2 for the experiment
and Γsim

disl ≈ 68.4 for the simulation). On the other hand,
the steepest but small increase of isolated disclinations is
shifted with respect to the hexatic-isotropic transition as
well, but only marginally. We do not observe an indication
of a second peak in specific heat corresponding to disclin-
ation unbinding presumably because the number of dis-
clinations is less than 5‰ of the overall defect density [see
Fig. 2(b)]. A rough estimate of the peak height due to dis-
clination unbinding (Ediscl

core ≈ 5kBT) gives only ≈1kB [64].
In summary, we have measured the specific heat via

fluctuations of the internal energy using a colloidal model
system and Monte Carlo simulations. We observe a single
peak in the specific heat above the solid-hexatic transition
(TcN > Tm), although melting in two dimensions shows
two phase transitions at distinct temperatures. The peak in
cN arises when the change in the defect density is largest,
which appears within the hexatic phase and not directly
at Tm. Whereas only a few defects are needed to destroy
the given order at Tm (and Ti), their cost in energy is small.
A second peak in cN associated to disclination unbinding
from dislocations is not detectable since their number
density stays small compared to the overall defect density
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even deep in the isotropic fluid phase. We can further
conclude that the absence of a latent heat strongly supports
the continuous character of both transitions.
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