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In a recent commentary, J. M. Kosterlitz described how D. Thou-
less and he got motivated to investigate melting and suprafluid-
ity in two dimensions [Kosterlitz JM (2016) J Phys Condens Matter
28:481001]. It was due to the lack of broken translational symme-
try in two dimensions—doubting the existence of 2D crystals—
and the first computer simulations foretelling 2D crystals (at least
in tiny systems). The lack of broken symmetries proposed by
D. Mermin and H. Wagner is caused by long wavelength den-
sity fluctuations. Those fluctuations do not only have structural
impact, but additionally a dynamical one: They cause the Linde-
mann criterion to fail in 2D in the sense that the mean squared
displacement of atoms is not limited. Comparing experimental
data from 3D and 2D amorphous solids with 2D crystals, we
disentangle Mermin–Wagner fluctuations from glassy structural
relaxations. Furthermore, we demonstrate with computer simula-
tions the logarithmic increase of displacements with system size:
Periodicity is not a requirement for Mermin–Wagner fluctuations,
which conserve the homogeneity of space on long scales.
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For structural phase transitions, it is well known that the micro-
scopic mechanisms breaking symmetry are not the same in

two and in three dimensions. Whereas 3D systems typically show
first-order transitions with phase equilibrium and latent heat,
2D crystals melt via two steps with an intermediate hexatic
phase. Unlike in 3D, translational and orientational symmetry
are not broken at the same temperature in 2D. The scenario
is described within the Kosterlitz, Thouless, Halperin, Nelson,
Young (KTHNY) theory (1–5), which was confirmed (e.g., in col-
loidal monolayers) (6, 7). However, for the glass transition, it is
usually assumed that dimensionality does not play a role for the
characteristics of the transition, and 2D and 3D systems are fre-
quently used synonymously (8–12), whereas differences between
the 2D and 3D glass transition are reported in ref. 13.

In the present work, we compare data from colloidal crystals
and glasses and show that Mermin–Wagner fluctuations, well
known from 2D crystals, are also present in amorphous solids
(14, 15). Mermin–Wagner fluctuations are usually discussed in
the framework of long-range order (magnetic or structural).
However, in the context of 2D crystals, they have also had an
impact on dynamic quantities like mean squared displacements
(MSDs). Long before 2D melting scenarios were discussed, there
was an intense debate as to whether crystals and perfect long-
range order (including magnetic order) can exist in 1D or 2D at
all (16–19). A beautiful heuristic argument was given by Peierls
(17): Consider a 1D chain of particles with nearest neighbor
interaction. The relative distance fluctuation between particle n
and particle n + 1 at finite temperature may be ξ. Similar is the
fluctuation between particle n + 1 and n + 2. The relative fluctu-
ation between second nearest neighbors, namely, particle n and
n + 2, is then

√
2 · ξ because they add up statistically indepen-

dently. Thus, the amplitude of the fluctuations grows with
√
N ·ξ

if N counts the number of particles in the chain. Periodicity can-
not exist at large scales in 1D crystals. To cover 3D space, one
has to investigate three linear independent directions. Within a
cube, for instance, there are six ways to get along the space diag-
onal, say, from the lower left front corner to the upper right back

corner (Fig. 1). It follows that in 3D, the fluctuations cannot add
up independently, and the amplitude of the fluctuations stays
finite being of the order of ξ. In 2D, one can show that fluc-
tuations add up logarithmically at finite temperatures. Trans-
lational correlation functions decay algebraically, whereas, and
this is important to note, orientational order is not affected
(14, 15, 17, 20, 21).

What is the impact of Mermin–Wagner fluctuations? They are
long(est) wavelength density fluctuations, and, mapping locally a
perfect mathematical 2D lattice with commensurable density and
orientation, one finds the displacement of particles to diverge.
It is shown analytically that this displacement from perfect lat-
tice sites increases in two dimensions logarithmically with dis-
tance (15, 20). Having a closer look at the arguments given
in ref. 17, one finds that periodicity is not a requirement for
those fluctuations. They will also be present in other 2D (and
1D) systems like quasicrystals or amorphous structures, pro-
vided the fact that nearest-neighbor distances have low variance
(unlike, e.g., in a gas). D. Cassi, F. Merkl, and H. Wagner (22–
24) mapped the absence of spontaneously broken symmetries to
the recurrence probability of random walks. In this work, it is
proven that spontaneous magnetization on amorphous or frac-
tal networks cannot occur in d ≤ 2. The dualism with random
walks shows that Mermin–Wagner fluctuations are time-depen-
dent for nonzero temperatures. In 2D crystals, Mermin–Wagner
fluctuations cause translational correlation functions to decay
algebraically (3). With respect to dynamic measures, they cause
the MSD to diverge and the standard Lindemann parameter to
fail. The impact on the dynamics is independent of periodic-
ity and should be found in quasicrystals and amorphous solids,
too (25). By using local coordinates as introduced by Bedanov
et al. and Lozovik and Farztdinov (26, 27), namely, subtracting
the trajectories of the nearest neighbors, the so-called reduced
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Fig. 1. Counting the path to cover space in various dimensions. In 1D, fluc-
tuations can add up independently on an axis along 0 to 1, whereas in 3D
they have to be correlated along the six different ways from 0 to 3 and stay
finite. In 2D, fluctuations add up logarithmically.

or local MSD stays finite in a 2D crystal, but still diverges in the
fluid. This defines a dynamic Lindemann criterion in 2D (28),
which is a maximal threshold for the local displacements in a
solid. In the language of glass theory, the nearest neighbors are
given by the cage, and the “cage-relative MSD” (CR-MSD) was
shown to have much more contrast [e.g., for dynamical hetero-
geneities in a 2D glass former compared with standard MSD
(29, 30)].

We do not intend to enter the discussion about an “ideal”
vs. “quasi-ideal” glass transition in the sense of infinite or
just extremely large viscosities. Because infinite timescales are
required to measure infinite viscosities, this is a purely aca-
demic discussion, and no experiment (or simulation) will prove
this strictly. With respect to Mermin–Wagner fluctuations, we
can state that it will depend on the way we measure: As in
crystals, the viscosity will always be finite on arbitrary large
length scales. On a local scale, Mermin–Wagner fluctuations do
not change the cage-escape process, and thus the microscopic
mechanism of 2D and 3D glass transitions are not necessarily
different. Recent work by Vivek et al. using cage-relative inter-
mediate scattering functions support this idea (31), and com-
puter simulations by Shiba et al. independently found similar
results (32).

Fig. 2 shows MSDs, where the sum runs over all particles N
and the brackets additionally denote an average about starting
times τ

〈r2(t)〉 =
1

N

N∑
j=1

[~rj (t + τ)− ~rj (τ)]2 [1]

and CR-MSDs

〈r2(t)〉CR =
1

N

N∑
j=1

[(~rj (t + τ)− ~rj (τ))

− 1

Nj

Nj∑
i=1

(~ri(t + τ)− ~ri(τ))]2 [2]

for crystals and amorphous solids at various temperatures. The
second sum in Eq. 2 is the center of mass of the cage given by
the Nj nearest neighbors of particle j determined by Voronoi–
Tesselation. Fig. 2, Left shows the standard MSD as a function of
time in red for a fluid system (red triangles) and two crystalline
samples (red squares and circles). In a 2D crystal, the MSD is not
confined. This indicates the failure of the Lindemann criterion
in 2D. By using cage-relative coordinates (blue curves), the fluid
data still diverge (blue triangles), but the CR-MSD from solid
samples are confined (blue squares and triangles). The dashed
line shows the critical value given by the dynamic Lindemann
criterion (which is γL = 0,033 for the given system). Below this
value, the system is a crystal (28, 33). Because grain boundaries,
which emerge for finite cooling rates during preparation of the
sample (34), might cause some plasticity, they are excluded in

the analysis.∗ This is done by analyzing only particles that have
a crystalline environment (six nearest neighbors) for the time of
investigation. Fig. 2, Center shows the same analysis for a glass-
forming system. The MSD of the fluid sample is labeled with red
triangles; the transparent squares label a sample that is glassy
but very close to the transition temperature; and the circles and
diamonds represent amorphous solids (35, 36). Focusing on the
CR-MSDs (blue curves), one finds that the amplitude of the local
displacements is lower, but even for the deepest supercooled
amorphous solid (blue diamond), there is an upturn for long
times. Whereas for the CR-MSD (blue curves), long wavelength
phonons are shortcut and thus invisible, the structural relaxation,
which typically appears for glasses, is still visible. The so-called
α-process, which is usually attributed to particles escaping their
cage given by nearest neighbors, is detectable in glass, but not in
the crystal. Note that the upturn in MSD (red) appears earlier
compared with the CR-MSD (blue) in the 2D glass. Fig. 2, Right
shows a 3D glass that lacks per definition Mermin–Wagner fluc-
tuations. The amplitude of the CR-MSD (blue) is only slightly
smaller, compared with the standard MSD (red), and the upturn
seem to happen simultaneously. Only structural relaxation is
measured that is shifted beyond the accessible time window for
the system deepest in the glass (diamonds). The corresponding
Fig. 2, Insets show typical snapshots of the 2D systems (see exper-
imental details below and in SI Text, whereas for the 3D system, a
sketch is shown, reconstructed from structural data of the amor-
phous solid.

1. Colloidal Systems
This difference of global and local fluctuations in 2D is already
a hallmark of Mermin–Wagner fluctuations, but before we focus
in orientational and structural decay, the experimental realiza-
tion of 2D and 3D systems and details about the simulations
are briefly discussed. The 2D systems are well established, and
we investigated crystallization, defects (37–40), and the glass
transition (30, 35, 36) with this setup. They consist of colloidal
monolayers where individual particles are sedimented by grav-
ity to a flat a water/air interface in hanging-droplet geometry.
The colloids are a few microns in size and perform Brownian
motion within the plane. The control parameter of the system is
Γ = Epot/Ekin , given by the ratio of potential energy of the par-
ticles (due to mutual dipolar interaction) and the kinetic energy
Ekin ∝ T due to thermal motion. It can be interpreted as an
inverse temperature (or dimensionless pressure); thus, large val-
ues of Γ refer to small temperatures and vice versa. The whole
monolayer consists of a few hundred thousand particles, and a
few thousand are monitored by standard video microscopy and
digital image analysis. As shown in Fig. S1 and as explained in SI
Text, ∼2% of pinned particles on a solid substrate is enough to
suppress Mermin–Wagner fluctuations.

The 3D colloidal systems consist of more than a billion parti-
cles, dissolved in an organic solvent with identical mass density;
thus, particles do not sediment. The colloids are slightly charged
and the interaction is given by Coulomb interaction screened by a
small amount of counterions in the solvent (Yukawa potential).
Additional details are given in Table S1 and SI Text. Monitor-
ing is performed with confocal microscopy, providing 3D images
with several thousand particles being tracked in the field of view.
Finite size effects in 2D were additionally investigated with com-
puter simulations, specifically Brownian dynamics simulation of
hard disks (see below). To prevent crystallization, a binary mix-
ture of different sizes of disks was used. The phase diagram was
controlled by entropy (not temperature), and the control param-
eter in this systems was solely given by the (area) packing fraction

∗Because real 3D monocrystals incorporate vacancies and interstitials due to entropic
reasons, the MSD can, strictly spoken, not be finite due to defect migration in 3D, too.
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Fig. 2. (Left) MSD of a defect free 2D crystal (red). The control parameter Γ is an inverse temperature; increasing Γ triggers solidification (melting is at
Γm = 60). On long times, the MSD diverges. Even a 2D crystal has fluid-like character due to Mermin–Wagner fluctuations, whereas, using local coordinates,
the CR-MSD stays finite (blue). (Center) In a 2D glass, an additional α-process causes the CR-MSD (blue) not to stay finite, and the amplitude of the global
fluctuation given by the MSD (red) is significantly larger (the glass transition is at ΓG ≈ 200, this curve is therefore plotted transparent). Both 2D systems
labeled with triangles are fluid. (Right) MSD (red) and CR-MSD (blue) for a 3D glass for various supercooling (details below). The difference in the amplitude
is significantly smaller, and the upturn seem to appear simultaneously. Note that the ordinate is zoomed in in 3D compared with 2D. Glasses labeled with
diamonds are deep in the glass phase, and the α-process starts to appear only at the end of the accessible time window.

φ of disks in the plane. The comparison of MSD and CR-MSD
for the 2D simulation is given in Fig. S2, completely in line with
Fig. 2 for 2D experimental glass data.

Colloidal systems are so-called soft-matter systems: The inter-
action energy between particles is of the order (tenth of)
eV, comparable to atomic or molecular systems. However,
because length scales (distances between particles) are approx-
imately 104 to 106 times larger, energy densities (and there-
fore elastic moduli) are smaller by 108 to 1012 in 2D, and
even 1012 to 1018 in 3D. Thus, soft matter has a rich vari-
ety of excited states at moderate temperatures, and ther-
mally induced fluctuations are easily accessible. This offers the
unique possibility to measure Mermin–Wagner fluctuations in
the laboratory. For atomic systems, including Graphene, it has
been argued that sheets of cosmologic size are necessary to
detect any realistic amplitude of Mermin–Wagner fluctuations
(41–43).

2. Structural and Orientational Decay in 2D and 3D
To measure the structural decay and to investigate the α-process
in glass, one frequently uses the intermediate scattering function
Φ̄(~q , t) = 〈n(~q , t + τ) · n∗(~q , τ)〉, where n(~q , t) is the Fourier
transform of the density n(~r , t) at time t . The self-part of the
intermediate scattering function Φq(t) ignores cross-correlations
between different particles at ~rk and ~rl , but correlates the posi-
tion of particle ~ri at τ = 0 with its position at τ = t in Fourier
space, where the sum runs over all particles N .

Φq(t) =

〈
1

N

N∑
j=1

e−i~q·∆~uj (t)

〉
. [3]

Eq. 3 is nothing but distribution of displacements in Fourier
space ∆uj (t) = ~rj (t + τ) − ~rj (τ). The wave vector ~q is as
usual chosen to be q = 2π/a0, the position where the struc-
ture factor S(q) has its first maximum. Angular brackets indicate
the canonical ensemble average for simulations and an average
about various starting times τ in experiments. In Fig. 3, Φq(t)
is plotted as red curves for four different systems: Shown are
the 2D crystal (Fig. 3, Upper Left) and 2D glass (Fig. 3, Upper
Right) of dipolar particles as in Fig. 2, but omitting the fluid
curves. After an initial decay due to thermal vibrations (which is
hardly seen on the log-lin scale), the red curves enter a plateau,
indicating the dynamic arrest. Only the stiffest glass (diamonds)
is stable on the accessible timescale. Fig. 3, Lower Right shows
data from simulations of a 2D hard disk system for compari-
son. The qualitative behavior is the same as for the 2D dipolar
glass. Fig. 3, Lower Left shows the 3D glass, again with a typi-
cal two-step decay, except for the strongest glass (red diamonds),

where the decay is hardly visible on the experimental accessible
timescale.

In analogy to the CR-MSD, one can define a cage-relative
intermediate scattering function given in blue in Fig. 3, where
the displacement is reduced by the center of mass motion of the
nearest neighbors (31). In 2D, the nearest neighbors are defined
by Voronoi–Tessellation, whereas in 3D a cutoff value of 1.2a0

is used to identify particles within the first shell representing
the cage,

ΦCR
q (t) =

〈
1

N

N∑
j=1

e−i~q(∆~uj (t)−∆~u
cage
j (t))

〉
, [4]

where the displacement of the cage of particle j given by the Nj

neighbors reads ∆~ucage
j (t) = 1

Nj

∑Nj

i=1(~ri(t + τ)− ~ri(τ)).
We further introduce the bond order correlation function

G∗6 (t) = 〈ψ∗6(t + τ)ψ6(τ)〉, which correlates the local director
field in time. In the crystal, the director field is given by the bond
direction to the nearest neighbors in sixfolded space:

ψ6 =
1

Ni

∑
i

e i6·θij (t), [5]

and θij (t) is the time-dependent angle of the bond direction
between particle i and j and an arbitrary reference axis. For the
2D glass, only ≈ 20% of the particles are sixfolded, ≈ 75% are
fivefolded and sevenfolded (together and similar distributed),
whereas < 5% are fourfolded or eightfolded. Thus, for the 2D
binary mixture, we sum up all relevant director fields,

G∗6 (t) =

8∑
n=4

〈ψ∗n(t + τ)ψn(τ)〉, [6]

still G∗6 (t = 0). 1. For the 3D glass, the local director field
of particle i is given by Q i

6m = 1
Nj

∑Nj

j=1 q6m(ϑij , ϕij ) based on
the spherical harmonics qlm(ϑ, ϕ) for l = 6 with polar ϑ and
azimutal ϕ angle of the bond (44). The 3D correlation function
reads

G∗6 (t) =
4π

2l + 1

N∑
i

m=6∑
m=−6

Q i
6m(t + τ)(Q i

6m(τ))
∗
, [7]

In Fig. 3, we now compare the cage-relative intermediate
scattering function Φq(t) plotted in blue and the bond-order
correlation function G∗6 (t) plotted in green. In the crystal,
both correlation functions do not decay. As for the MSD, the
Mermin–Wagner fluctuations are shortcut by using local
coordinates. The orientational order does not decay because
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Fig. 3. Self-intermediate scattering function Φq(t) (red), cage-relative self-intermediate scattering ΦCR
q (t) (blue), and bond order correlation function G∗

6 (t)

(green) for various temperatures of a 2D crystal (Upper Left), a 2D glass (Right), and 3D glass (Lower Left). In the 2D crystal ΦCR
q (t) and G∗

6 (t) do not decay,

whereas Φq(t) decays due to Mermin–Wagner fluctuations. In the experimental and simulated 2D glass, ΦCR
q (t) and G∗

6 (t) decay simultaneously due to
structural relaxations within the α-process, whereas Φq(t) decays earlier due to Mermin–Wagner fluctuations and the α-process. In the 3D glass, only an
α-process occurs, and no separation in timescales is visible. The stiffest glasses (diamonds) do not decay within the accessible time window, but indicate the
stability of our experiments.

the modulus of rotational stiffness, (usually called Frank’s con-
stant in analogy to liquid crystal theory) is infinite in a 2D
crystal (4, 6), even if translational order decays and the MSD
diverges. Long-range bend and splay are suppressed, while
long range density fluctuations are allowed in 2D crystals
(4, 45).

For the soft glasses Γ = 200/231 (green and blue squares/
circles in Fig. 3, Upper Right), both correlation function ΦCR

q (t)
and G∗6 (t) decay, but not the stiffest one for Γ = 423 (diamonds),
where the standard Φq(t) was already stable within the given
time window. Note that the timescales for orientational and cage-
relative structural decay is the same for identical Γ (comparing
curves with green and blue squares for Γ = 200 and green and
blue circles for Γ = 231). The separation in timescales compared
with the standard structural decay Φq(t) (red) is clearly visi-
ble. The 2D simulations show the same behavior, which means
that 2D glasses are affected by slow Mermin–Wagner fluctua-
tions and structural relaxations. Fig. 3, Lower Left shows the 3D
glass. The stiffest glass 1 (diamonds) is almost stable. In glass 2
(blue, red, and green circles) and glass 3 (blue, red, and green
squares), all correlation functions decay on the same timescale
due to structural relaxations, but without Mermin–Wagner fluc-
tuations. We conclude that 2D crystals are affected by Mermin–

Wagner fluctuations, and 2D glasses are affected by Mermin–
Wagner fluctuations and α-relaxation, whereas 3D glasses are
only affected by α-relaxation.

3. Finite Size Effects
In Fig. 3, a separation of timescales between standard structural
and orientational decay was shown for the 2D glasses. How-
ever, the α-relaxation is strongly dependent on the supercool-
ing, but only marginally affected by system size. Escaping the
cage is a local mechanism. Note that all experimental systems
are much larger than the examined fields of view. The amplitude
of Mermin–Wagner fluctuations, conversely, depends on elastic-
ity (which is a function of temperature), but more importantly,
it depends logarithmically on system size (14, 15, 20). No pre-
dictions exist for the timescale of Mermin–Wagner fluctuations,
but it is reasonable to assume that they also depend on system
size. Accidentally, it might be the case that Mermin–Wagner
fluctuations and α-relaxation fall on top of each other. There-
fore, we vary systematically the number of particles for the sim-
ulated hard disk system at fixed packing fraction between 1,000
and 16,000 disks. Fig. 4 shows a comparison of cage-relative and
normal MSDs. All displacements measured in local coordinates
collapse. The normal MSD, conversely, shows a strong finite

Illing et al. PNAS | February 21, 2017 | vol. 114 | no. 8 | 1859



Fig. 4. MSD and CR-MSD of a hard disk system for various system sizes at
φ= 0.81 for N = 1,000 up to 16,000 particles. Although the CR-MSD (blue)
does not show finite size effects in the plateau, the standard MSD (red) is
strongly affected. Increasing opacity of the curves corresponds to increasing
size. A total of 250 independent simulations were performed for each curve
(except for N = 16,000 with 191 runs). Inset shows the linear amplitude of
the fluctuations

√
MSD(τi) vs. system size L ∝

√
N in log-lin scale. τi is given

by the inflection point of the curves, marked as gray circles. The straight line
is a linear fit of the log10(L) behavior and verifies Mermin–Wagner fluctua-
tions in 2D amorphous solids.

size effect. The height of the plateau is extracted by taking the
amplitudes of the displacement at the inflection point 〈r2(τi)〉,
indicated by open circles in Fig. 4, being determined by fitting
a third-order polynomial in the region of interest. Note that the
inflection point shifts to later times for larger systems, validating
the assumption above.

Plotting the square root of the amplitude of the inflection
point as a function of the logarithm of the linear system size
L∝
√
N gives a straight line. This is the logarithmic fingerprint of

Mermin–Wagner fluctuations. A recent manuscript by H. Shiba
et al. (32) independently reports the same logarithmic increase
of long wavelength fluctuations in 2D of a simulated soft sphere
glass, although to our knowledge they have not yet been directly
measured in crystals.

4. Discussion
In ref. 13, E. Flenner and G. Szamel reported fundamental dif-
ferences between glassy dynamics in two and three dimensions
and detected strong finite size effects in 2D. The localization in
a 2D glass (e.g., measured by the plateau of the intermediate
scattering function or MSD) is not well pronounced and decays
faster in large systems. Bond-order correlation functions (taking
only sixfolded particles into account) decay later and show less
size dependence. Additionally, particle trajectories show sud-
den jumps in 3D, but not in 2D, and dynamical heterogeneities
are significantly pronounced in 3D. They conclude that vitrifi-
cation in 2D and 3D is not the same, calling for a reexamina-
tion of the present glass transition paradigm in 2D. We per-
form this reexamination, taking Mermin–Wagner fluctuations
into account. We cannot address differences between Newtonian
and Brownian dynamics (13) in colloidal experiments, and thus
they are not discussed in the present manuscript. All other dif-
ferences observed in ref. 13 for 2D and 3D disappear in our
system when using local coordinates (25). E. Flenner and G.
Szamel investigated remarkably large systems to reduce finite
size effects, but this even enhances Mermin–Wagner fluctua-
tions: Those fluctuations affect translational degrees of free-
dom, but not orientational ones, and depend logarithmically
on the system size. In ref. 29, we showed that non-Gaussian

behavior of the self part of the van-Hove function (which
measures the variance of displacements at a given time) in
2D systems is only visible in local, cage-relative coordinates.
Equivalently, the dynamical heterogeneities show significantly
more contrast in cage-relative coordinates. Mermin–Wagner
fluctuations simply “smear out” local events like hopping and
cage escape if particles are measured in a global coordinate
frame (29).

In ref. 30, we assumed that the presence of collective motion
might be due to long wavelength fluctuations. Now this is vali-
dated in direct comparison with 2D crystals. A recent manuscript
by S. Vivek et al. (31) reports results of a soft sphere and
a hard sphere glass in 2D compared with a 3D glass. Using
similar correlation functions, their results are essentially the
same, but the (almost) hard sphere glass showed less signature
of Mermin–Wagner fluctuations. This can be explained by the
work of Fröhlich and Pfister (20): They determined the fol-
lowing conditions for Mermin–Wagner fluctuations to appear:
(i) The pair-potential of particles has to be integrable in the far
field and (ii) analytically at the origin. The first condition rules
out Coulomb interaction, because for this long-range potential,
the second, third, and higher nearest-neighbors interaction is
strong enough that particle displacements cannot add up statisti-
cally independently. The second condition questions hard sphere
interaction. An easy argument in the limit of zero temperature
might go as follows: When all particles are at contact and closed
packed, no positional fluctuations can appear at all. At finite tem-
perature, the Mermin–Wagner fluctuations are excited, as shown
in Fig. 4, but the separation of timescales is less pronounced in
Fig. 3 for the hard-disks simulation, consistent with the results of
Vivek et al. (31). An alternative ansatz to investigate Mermin–
Wagner fluctuations is reported by H. Shiba et al., showing
analogue results in large-scale computer simulations. Shiba et
al. analyzed bond-breakage correlations, four-point correlations
(46), and intermediate scattering functions in 2D and in 3D.
Being a local quantity, bond-breakage correlations do not differ
in 2D and 3D; thus, the microscopic nature of the glass transition
is similar. However, the density of vibrational states of a 2D sys-
tem, computed from the velocity autocorrelation function, shows
an infinite growth of acoustic vibrations, very similar to 2D crys-
tals (32). Those beautiful results are completely in line with our
arguments.

Connecting Mermin–Wagner fluctuations and glassy behav-
ior in 2D points to another question that is yet not completely
solved, namely, how (shear) solidity appears. Glass is a solid on
intermediate timescales, but on infinite times it may flow. A 2D
crystal is soft on infinite length scales (lacking globally broken
symmetries) and a solid only at intermediate scales.

5. Conclusions
Comparing experimental and simulation data in 2D and 3D, we
show that a 2D crystal is affected by Mermin–Wagner fluctua-
tions in the long time limit; a 2D glass has Mermin–Wagner fluc-
tuations as a “second channel of decay” beside the standard α-
process of structural relaxation, whereas a 3D glass only shows
an α-process. The existence of Mermin–Wagner fluctuations is
not limited to low dimensional crystals; they also appear in 2D
amorphous solids and certainly in 2D quasicrystals. The compari-
son of structural and orientational measures shows that Mermin–
Wagner fluctuations can explain the differences in orientational
relaxation times (not affected by long wavelength fluctuations)
and translational relaxation times (affected by those fluctua-
tions). Furthermore, Mermin–Wagner fluctuations exist on large
scales, and the local effect (within the size of the cage) is only an
affine translation. Thus, the cage-escape mechanism is not influ-
enced by Mermin–Wagner fluctuations. We can conclude that
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the microscopic mechanism of the 2D and 3D glass transition is
not necessarily different, whereas the transient localization mea-
sured by global variables is less pronounced in 2D compared with
3D, taking Mermin–Wagner fluctuations into account.
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