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Preface

This chapter is an introduction to phase transitions in two dimensional systems. In contrast
to three dimensions, microscopic theories of melting exist in 2D. The most well-known of
them was developed more than 30 years ago by Kosterlitz, Thouless, Halperin, Nelson and
Young (KTHNY-theory). This theory predicts the unbinding of topological defects to break
the symmetry in two steps at two distinct temperatures. Dissociation of dislocation pairs first
melts the crystal into a still orientational ordered (hexatic) phase and, in the second step,
dissociation of free dislocations causes the system to go isotropic fluid. Colloidal systems are
used to verify experimentally the predictions of KTHNY-theory in detail as colloids provide
the possibility to visualize the change in symmetry on an ’atomic’ level by simple video-
microscopy. Elastic modules like Young’s modulus and Frank’s constant are deduced from
microscopic trajectories of colloids in order to quantify the softening of the two dimensional
ensemble in the vicinity of the phase transitions.



0.1 Introduction

Macroscopic physical properties of matter depend on the interactions between atoms or molecules,
on their spatial arrangement and on temperature. A - sometimes subtle - balance between the
internal energy and entropy dictates the thermodynamic phase behavior of the bulk material.
Depending on temperature, pressure or density different phases may appear with completely
different response to external solicitation: Response functions such as magnetic susceptibility,
mechanical compressibility or shear modulus may greatly differ in the high and low temper-
ature phase. As a rule the high temperature phase is always more symmetric than the low
temperature phase. In a fluid, for instance, the positions of the atoms are randomly distributed
and no position is more likely than any other. At macroscopic scales the fluid therefore looks
the same at every position indicating continuous translational and orientational symmetry. By
lowering the temperature T of the fluid, translational degrees of freedom of individual parti-
cles become restricted. The system can lower its free energy F' = U — T'S by introducing
order. The corresponding loss of entropy S (that enters free energy F with a negative sign
thereby leading to an increase of free energy) is overcompensated by the reduction of the
internal energy U: Potential energy wins against thermal energy. Another well known exam-
ple is the para- to ferromagnetic transition where random, totally symmetric directions of the
elementary atomic moments in the high-T phase spontaneously align in the magnetic low-T
phase.

In both of our examples a symmetry is broken due to ordering: The magnetic moments
start to orient parallel in magnetic systems so rotational invariance is broken, and atoms ar-
range in closed packed periodic structures where continuous translational and orientational
symmetries are broken in favor of discrete ones. It is a general feature of phase transitions,
that high symmetry in the high temperature phase is broken in one or several steps until a
low temperature phase with low symmetry occurs. Note however, as an exception, that the
common transition between a liquid and a gas which are both high symmetry phases, does
not obey this principle, but above the critical point these two phases with same symmetry are
indistinguishable anyway, so we may consider both as fluid.

The concept of macroscopic symmetry breaking does not tell us anything about how a
particular system manages to do so on the atomic scale. In fact, the microscopic processes
involved both in melting and freezing are still poorly understood in many systems, despite
of their importance in the fabrication and properties of most solid materials. As a general
concept, during heating of the system, increasing amounts of defects in the ordered phase and
dynamical (vibrational) modes provide the tools to restore symmetry. The dynamical modes
depend strongly of the phase itself and are connected to the corresponding response functions
which are thus strongly dependent on temperature. In a liquid, for instance, there is no trans-
verse sound but longitudinal one since there is no shear but a compression modulus.

In order to calculate the properties of matter from a microscopic point of view one has
to consider a huge amount of particles, typically of the order 10% (e.g. in a liter of water).
This combined with the fact that one has to deal with singularities, for instance to describe a
jump in the specific heat, makes it impossible to solve the equations of states to describe phase
transitions for any three-dimensional model represented in nature. Thus, phenomenological
theories have been developed, with the perhaps surprising outcome that in the vicinity of the
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Figure 1: One dimensional wave of magnetic moments with lowest wavelength. The orientation angle
of the moments varies in the range [0, 2] over the system size L.

phase transition the microscopic interaction is ancillary. This is because large fluctuations
in the order-parameter which describes the magnitude of the symmetry-related order play an
important role. The latter leads to so called universality classes of phase transitions which are
characterized by a universal behavior irrespective of the microscopics, but rather just depend
on the degrees of freedom of the system and on the dimension of the order-parameter. This
topic which is most relevant for 3 dimensional systems is far beyond the scope of this article.

In this chapter we rather focus on systems in two dimensions where the situation is quite
different and in fact much better understood. In 2D, no true long range order exists due to
long wavelength fluctuations. This can be seen most easily from an argument given by Peierls
(1935) for the magnetic XY-model. Let us assume to have N moments per system size L in
one direction. For small relative rotations of neighboring magnetic moments d¢ around the
equilibrium the interaction can be approximated by a harmonic potential. If the magnetic mo-
ments interact only with a finite number of neighbors then the energy density of the mode with
the longest wavelength is oc (27r/N)2. Here the angle of rotation between nearest neighbors
is d¢ = 27/N. Summation over all N magnetic moments, varying from 0 to 27 from one
side of the sample to the other (see Fig. (1)) leads to an energy proportional to L(27/L)? in
one dimension. It is L?(27/L)? in two dimensions and L3(27/L)? in three dimensions. So
in 1D and 2D energy does not diverge with system size and the long wavelength modes will
be activated at finite temperature. A generalization of this argument for nonharmonic inter-
actions was given by Mermin and Wagner (1966) and for lattice theories by Mermin (1968).

—

The displacement @(R) of a particle diverges with distance R,
<[@(R)—@(R)?> ~ m|R—R'| for |R—FR|— oo (1)

where R = nidy + n2as (n; € N and a; primitive translation vector) is an ideal lattice
site. Due to the weak logarithmic divergence one can still talk of a crystal. The discrete
translational order is quasi-long range whereas the discrete rotational symmetry is conserved.
Therefore, unlike in 3D crystals, the structure factor

1 P
S(@) = (D e M) @)

is not a set of delta peaks, but the peaks have a finite width and a particular g-dependent shape
which will be further discussed below.
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Figure 2: S(q) of a colloidal system at various temperatures: a) isotropic liquid, b) hexatic phase, and
¢) crystal (a = 1/,/p average inter-particle distance, with p being the 2D-density).

In 2D systems a microscopic theory of melting was developed in the 70th by Kosterlitz,
Thouless, Halperin, Nelson, and Young (KTHNY-theory). Melting is driven by the emergence
- in the crystalline phase - of a class of topological defects, namely thermally activated dislo-
cations pairs which dissociate at the melting temperature 7,,, (Kosterlitz and Thouless 1973;
Young 1979). This gives rise to a softening of the crystal’s compressibility and shear elas-
ticity and the melting transition is a second order transition. Nelson and Halperin predicted,
that the fluid phase above T, still exhibits quasi-long-range orientational order with a six-
fold symmetric director field (Halperin and Nelson 1978; Nelson and Halperin 1979). The
orientational correlation function in this phase decays algebraically which is associated with a
non-vanishing elastic modulus of the orientational stiffness, called Frank’s constant, K 4. Fi-
nally, at a temperature 7; > T, the orientational symmetry is broken upon the origination of a
second class of topological defects: Some of the dislocations dissociate into free disclinations
leading to another second order transition and an exponential decay of the orientational corre-
lation function above T;. Now, the fluid shows ordinary short range rotational and positional
order as a characteristic of any isotropic liquid. The intermediate thermodynamic phase lo-
cated between the isotropic liquid and the crystalline solid (which is unknown in 3d-systems)
is called hexatic. In order to visualize the different symmetries we just discussed, the structure
factors of all three phases are shown in Fig. (2).

KTHNY is not the only melting scenario proposed so far for 2D-systems. Alternative the-
oretical approaches such as grain boundary induced melting (Chui 1983; Kleinert 1983) or
condensation of geometrical defects (Glaser and Clark 1993) suggest first order transitions,
and in (Lansac et al. 2006) the effect of geometrical versus topological defects is discussed.
Some numerical simulations indicate meta-stability of the hexatic phase (Chen et al. 1995;
Somer et al. 1997) or a first-order melting transition (Jaster 1999). The latter is supposed to
depend on finite-size effects (Mak 2006) in systems with hard-core interaction where fluctu-
ations are believed to be very important. On the other hand, the effects of fluctuations seem
less relevant in systems with long-range pair potential. Indeed, recent simulations with dipole-
dipole interaction clearly show second order behavior (Lin et al. 2006).
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This chapter deals with phase transitions in two-dimensional systems. In the following
section 0.2 we outline the theory of dislocation mediated melting. In section 0.3 different ex-
periments to verify the KTHNY-theory are discussed and the unique advantages of colloidal
2D systems are highlighted. We focus on colloidal systems in section 0.4 as they provide
the possibility to visualize the ensemble at an ’atomic’ level. Trajectories of colloids can
be recorded using video microscopy and the change in symmetry at the phase transition can
be observed directly. In particular, we emphasize experiments with colloids under magnetic
dipole-dipole interaction confined at an absolutely smooth and flat surface because they pro-
vide the unique possibility to tune the system-temperature in situ and to reach true thermo-
dynamic equilibrium. This system turns out to be an ideal realization of a two dimensional
ensemble and the pair potential is known precisely. Due to these features these experiments
have shown the most complete and quantitative evidence for KTHNY-melting so far.

0.2 Theoretical background

0.2.1 Dislocations and disclinations in two-dimensional crystals

A dislocation in a two-dimensional crystal is a defect that arises from the insertion of half
lattice lines into the otherwise perfect lattice. Due to this lines a single dislocation cannot
be made to disappear by any continuous transformation. This is why a dislocation is a topo-
logical defect. Fig. (3) shows a dislocation in a square and a triangular lattice with the thick
dashed lines representing the inserted half lattice lines (two lines in case of a hexagonal crystal
due to symmetry, one line for a square one). From the sketch it is also evident how one can
come back to the regular lattice: Cutting the crystal along the hatched bar, one has to relax
the distorted lattice by shifting the whole lattice on one side of the cut by the vector b such
that eventually the sites A and A’, B and B’, and C and C’ are becoming connected again.
This way of visualizing dislocations in solids is known as the Volterra construction, the cut
is termed the *Volterra cut’ (Chaikin and Lubensky 1995). The vector bis called a Burgers
vector and is introduced to index the strength and orientation of a dislocation. A simple way
to determine the Burgers vector of a dislocation is to draw a loop along a path which encloses
the dislocation. This loop will contain an extra step corresponding to a direct lattice vector.
This vector is the Burgers vector. In Fig. (3) such a Burgers circuit is completed following
four steps along nearest neighbor bonds in each of the lattice directions on a path around the
dislocation. From this construction it is then clear that inserting two parallel half lines instead
of one, one would obtain a Burgers vector that is twice as long. In other words, a Burgers
vector is a multiple of a direct lattice vector, with the multiplicity factor corresponding to the
number of inserted parallel half lines. As Burgers vectors with multiplicity factors greater one
are hardly ever occurring in our systems we will henceforth consider only dislocation with
Burgers vectors of length ag where ag is the lattice constant. Then due to the symmetry of
the lattice, there are only three Burgers vectors possible on a triangular lattice, and just two
on a square lattice, one for each basic lattice vector. In the following we consider only the
triangular lattice since it is the most densely packed one in 2D and favored by nature.



Figure 3: Dislocations on a square a) and a triangular b), lattice arising from insertion of half lattice
lines (thick dashed line with a circle indicating the tip of the inserted half line). The dislocation is char-
acterized by a Burgers vector b which can be determined by considering a loop enclosing the dislocation.
Starting in a) from site S one follows the same number of steps along nearest neighbor bonds that are
made in each of the lattice directions in completing the circuit. The path ends at site E which is not
identical to S. Then b is the vector pointing from S to E. b in b) is obtained in the same way. In b),
six-fold coordinated sites are plotted as filled circles, seven-fold coordinated sites as squares, and sites
that are five-fold coordinated as triangles. The regular lattice can be restored by cutting the crystal along
the hatched bar putting A next to A’, B next to B’ and so forth.

The well-known Voronoi construction is used to determine the number of next neighbors
of each site. This construction allows us to generate a mosaic from a given set of lattice
sites. It assigns to each site a cell which is defined as the set of all points which are at least
as close to this site as to any other site. Since the resulting Voronoi tessellation is an area-
filling cellular structure it allows us to introduce the notion of neighborhood, i.e. two sites are
neighbored if their cells share at least one side. An example of such a Voronoi construction
is given in Fig. (4.b) taken from (Keim 2005). By means of such a Voronoi tessellation one
can now determine the neighbor statistics for a triangular lattice hosting a dislocation. Fig. (3)
shows that the last site at the end of the inserted half line has only five rather than the usual
six next neighbors. Next to this site, there is a seven-fold coordinated site. So, a dislocation
can be viewed as special kind of defect pair, a 5-fold site being next neighbor to a seven-fold
coordinated lattice site where the vector 757 pointing along the bond connecting these two sites
is almost perpendicular to the Burgers vector. A photograph of a real two-dimensional crystal
showing a dislocation is given in Fig. (4.a). Since the distortion of the lattice near a dislocation
costs elastic energy the probability to find a dislocation in a crystal increases with temperature.
This means that even in crystals which are defect-free at zero temperature, dislocations have
a chance of being formed at finite temperature. How is this sudden occurrence possible if
formation of a dislocation requires insertion of half a lattice line? The answer to this question
is that single dislocations will never spontaneously form, but that dislocations will first appear



0.2  Theoretical background 9

Figure 4: Top, a) Micrograph (420 x 310 pum) of a colloidal crystal showing three isolated dislocations:
the black squares mark the seven-fold coordinated colloids and the triangles mark the five-fold coordi-
nated particles representing the end of the inserted half lattice lines (white solid lines). Bottom, b) By
means of the Voronoi construction the same area of the crystal is divided into cells which allows us to
determine the number of nearest neighbors of each particle.
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Figure 5: Schematic drawing illustrating the formation and dissociation of dislocation pairs, see text.
As in Fig. (3), seven-fold coordinated sites are plotted as squares, and five-fold coordinated sites as
triangles.

in form of dislocation pairs which then can dissociate into single dislocations. And such pairs
can evolve from local lattice displacements as we now explain by means of Fig. (5). Starting
in Fig. (5.a) from a perfect triangular lattice the sites A’ and B’ are displaced along a lattice
line by a vector cf, while their next neighbors A and B on a line parallel to the first line are
displaced by —d. The distance rpp’ between B and B’ thus increases from ag to rgp =
\/ a? + (2d)? + 2day while the distance between A and A’ reduces from /3ag to 744 =
V/3a2 + (2d)? — 6dag. A Voronoi construction recognizes two sites as next neighbors if their
distance is smaller than v/7ao/2. Once d > ag/4 we find 744 < \/Tag/2 and rpp: >
\ﬁao /2, meaning that the pair B and B’ then ceases to be next neighbors, while A and
A’ are now allowed to become next neighbors. Hence, the effect of this coordinated shift
through d is that B and B’ have lost a neighbor, and A and A’ have gained one, and that
taken together two (5,7) pairs have formed. This dislocation pair is bound at the smallest
dislocation pair distance possible. If sufficient thermal energy is provided, the dislocation
pair can be excited to a higher bound state in which the pair distance is larger (as depicted in
Fig. (5.b)). Eventually this pair can completely dissociate into two dislocations. In this way
two single dislocations are generated without there being the need to insert half lines. Note
that the two dislocations in Fig. (5) have opposite Burgers vectors whose sum is zero. More
generally we may conclude that a collection of dislocations whose sum of Burgers vectors
vanish can be obtained through a continuous transformation starting from a regular lattice.

With the decomposition of pairs into single dislocations the decay of order is not yet com-
pleted: the next step that may occur if enough thermal energy is available, is a dissociation
of a single dislocation into an isolated five-fold coordinated site and another seven-fold coor-
dinated site. These defects are disclinations. They form another class of topological defects
in 2D solids. While for a dislocation the two sides of the Volterra cut have to be translated
relative to each other, a disclination is obtained if the two sides are twisted relative to each
other. For a triangular lattice there are just two angles through which the two sides can be ro-
tated and still glued together, namely +7 /3 and — /3, resulting in the structures of Fig. (6.a)
and Fig. (6.c). Note that the positive disclination in c) has a five-fold coordinated site at the
core while the negative disclination in a) has a site that is seven-fold coordinated. Fig. (6.b)
taken from (Somer et al. 1997) shows a 2D system with four widely spaced disclinations, two
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Figure 6: a) A —7/3 disclination in a triangular crystal with its seven-fold coordinated site in the center.
b) A system with four widely spaced disclinations (two 4+ /3 and two —7 /3 disclinations). ¢) A +7/3
disclination with its five-fold coordinated site.

positive ones in the upper left and lower right corner, and two negative ones in the upper right
and lower left corner. It is evident that what has remained of the crystalline order in Fig. (3.b)
has now been completely destroyed.

In summary, we note that neither individual disclinations nor single dislocations can be
produced through any kind of continuous transformation since they are topological defects.
However, when produced via appropriately formed pairs, they can: dislocations from (5,7,5,7)
clusters, and disclinations from (5, 7) dislocations. This natural production pathway suggests
that with increasing temperature first dislocations and then disclinations will form in the crys-
tal. The first defect type destroys the translational order (as we can predict from the inserted
half line in Fig. (3.b)) and transforms the crystal into what is known as the ’hexatic phase’,
while occurrence of the second type of defect results in the destruction of the orientational
order, leading to a phase transition into the fluid phase. We will elaborate on that further
below.

0.2.2 Elastic constants in 2D systems

In 2D hexagonal crystals there are only two independent elastic constants and the elastic free
energy density F' can be written as

A
F= Suiiug; + pijui; 3)
where u;; = (Oy,u; + Oy, u;)/2 is the usual strain tensor derived from the displacement field
with components u;. We here use the usual summation convention. A and p in eq. (3) are
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called the Lamé coefficient. Decomposing u;; into a scalar and a symmetric traceless tensor,
we may rewrite eq. (3) as

F= gufi + p(ui; — %@jukk)Q “)
with B = X\ + p. The first term in this expression quantifies the elastic energy connected
with pure area changes and, accordingly, B is called the bulk modulus. The second term
corresponds to distortions in which the area of the crystal does not change, but only its form,
something that is characteristic of a pure shear deformation. Therefore, p is termed the shear
modulus. Equation (4) leads us to the stress tensor

oF

1
= oy Bugkdij + 2p(uij — §5ijukk) ®)

044

which can be inverted to give the strain in terms of the stress

1 1 1
U5 = Eakkaij + E(O’@j — §§ijakk) . (6)
Now let us suppose that the 2D hexagonal crystal is subjected to a positive tension with a force

per unit length T" exerted across opposite sides, i.e., f, = T'dl is the force applied to a crystal

side with a normal in €, direction and f,, = —T'dl the force applied to the opposite side with
normal —&,, then o;; = 79;,0;, and we obtain from eq. (6)
1 1
= (—+— T 7
Huy (4B + 4u) @
1 1
T — - — T 8
b (4B 4u) ®)
Uypy = Ugy =0.

To cast this into a form similar to Hooke’s law, we introduce a constant K such that eq. (7)
can be rewritten as T' = K, with

P ( 1 1 )—1 4Bp Ap(A 4 p) ©)

R + _ = =

4B 4pu B+pu A2
This constant K is the Young’s modulus which is nothing but the elastic constant that couples
an uniaxial tension to the strain along the same direction. On the other hand, the strain along

the normal direction determines what is known as Poisson’s ratio 0 = —u,,/u,,. Hence,
from eq. (7) and (8),
B - A
— B (10)

"TBtu Atao

As we will see further below, for temperatures slightly above the melting temperature of the
crystal, some order may remain even though the full translational symmetry has been de-
stroyed. This residual order is an orientational one and characterizes the hexatic phase; it is
described by a bond-angle field () and controlled by a Hamiltonian of the form

Hy— %KA(T)/|V0(F)|2¢Z27* (11)
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with Frank’s constant K 4(T") as yet another elastic (scalar) constant relevant in the hexatic
phase. In the fluid phase, finally, we have the compressibility as the only elastic constant.

0.2.3 Defects and energies

We next calculate the energy for a single dislocation in a 2D crystal with triangular symmetry.
To this end, we first need to know the displacement field « near the dislocation. In equilibrium
the internal force f; = 81.]. 0;; on each area element of the solid must be zero. Hence, from
eq. (5),

3ukk (“)uz-j

+2u

A 8.131' 8.Tj

=0 (12)

fori € (z,y). As discussed in section 0.2, a dislocation located at site 7 is characterized by
the Burgers circuit, that is by the amount by which a contour integral of the displacement field
taken around the dislocation fails to close,

fdvz = aob(7) (13)

where 5(7”) is one of the three dimensionless Burgers vectors possible on a triangular lattice.
The displacement field « is then a solution to the equilibrium equations, eq. (12), subject to
the Burgers circuit constraint given in eq. (13). For a dislocation b= be,, at the origin, the
solution to this problem (Chaikin and Lubensky 1995; Nabarro 1967) reads

bao K
s = (s K ny)
U, 27r(¢+8usm 10}
bay I K
— Inr+ — 2) 14
Uy 277()\‘1‘2/1 nr+8ucos 10} (14)

with (7, ¢) being the usual cylindrical coordinates. One easily verifies that eq. (13) is satisfied
( f dug, = bag and f du, = 0). From this solution one can then obtain the associated stress
tensor needed to eventually compute the energy of a dislocation,

1
E, = 5/d%aijuij (15)
resulting in
212
K
F-p,+E =K R (16)
8 a

where we have restricted r to radii greater than the dislocation core radius a and smaller than
R, the linear dimension of the sample. The calculation of the energy at the core of the defect
would require some microscopic model and is generally quite complicated. We therefore
inserted some unspecified constant, the dislocation core energy E..

Repeating this calculation for two dislocations, 51 = —52 = 5, a distance 772 apart from
each other, we obtain
a%bZK T12 CL%K (5 _012)2

In — —
Amr a ar r?

FE =

1+ 2F,. (17)
2
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We first note that the logarithmic divergence with system size of the expression in eq. (16)
disappears when two dislocations interact. This is due to the fact that we have considered a
dislocation pair of antisymmetric Burgers vectors which according to our considerations in
section (0.2) can be obtained by a continuous transformation starting from a regular lattice.
Such a pair can therefore not produce any kind of divergence with system size. More generally
we may expect that there will be no In R divergence in a system with many dislocations as long
as Za E(Fa) = 0. Secondly, we learn from eq. (17) that two dislocations attract each other,
obviously because this lowers the strain energy of the system. The second term in eq. (17) is
an angular term favoring a relative orientation of the two dislocations such that 715 becomes
aligned to a vector perpendicular to b.

Equation (17) can be generalized to an arbitrary distribution of dislocations at positions

_
Tas

, . o =
B 7(10K1 - -, Roz,a’ _ [b(?"a) . Ra,a/] [b(ra/) . Ra,o/]

Hp = 3 a;, [b(m) b(Far)In — R, }
+ By [b()? (18)

with ﬁa’a/ = 7, — . This Hamiltonian is called *dislocation Hamiltonian’ in the following.
The neutrality of the dislocation gas is understood, i.e., ), b(7,) = 0. Note that, in principle,
also triplets of appropriately chosen Burgers vectors can add up to zero and would thus be
compatible with the neutrality condition. However, these so-called higher complexions are
neglected in eq. (18) which describes a gas of only pair-wise interacting dislocations. Note
also that Y, |b(7)|? is just the number of dislocations in the system.

Equation (18) is still not the most general case possible. At sufficiently high temperatures,
both disclinations and dislocations are present in the system, and each type interacts not only
with its own class of defects but also with the other defect class. So, we consider an arbitrary
distribution of dislocations and disclinations. As discussed in section (0.2), a disclination is
characterized by the angles through which the two sides of the Volterra cut can be rotated.
In a hexagonal lattice, these are the angles /3. A distribution of disclinations is now best
represented by a disclination density

s(M) = sad(i = 7a) (19)

where s, = =1, while a distribution of dislocations are described by a vector dislocation
density

b(7) = > bad(F = 7a) (20)

with the Burgers vectors b, for dislocations at positions 7. The Fourier-transforms of these
quantities are

s(@) = Zsae*“ﬁa (2D
(g = Y bae T



0.2 Theoretical background 15

We can now define a total defect density by adding the disclination density (which are “free”
disclinations) and a contribution stemming from the dislocations (which can be considered as
“bound” disclinations),

5(q) = 5 5(@) +iao(qybs(q) — guby(q)) - (22)

Note that now 7/3 and ag are to be inserted since both defect variables s, and l_;a are chosen
such that their modulus is one. The generalization of eq. (13) now reads

7{ du; = ag Z baj j{ df = %Z Sa (23)
F « F «

where the sum is over all b, and s, enclosed by I'. The energy associated with this general
defect distribution can be calculated once the strain and stress field is obtained from solving
eq. (12) together with (23). One finds (Chaikin and Lubensky 1995),

K/iq ZS(@S-D) + B LRI 24

as the Hamiltonian of a mixed system of dislocations and disclinations. F is the disclination
core energy. From this expression eq. (16) is recovered if s(7) is set to zero and just one
Burgers vector is assumed to be placed at the origin. In addition, the dislocation Hamiltonian
in eq. (18) is reproduced by setting s(7) = 0. Setting, on the other hand, b(7") = 0 in eq. (20)
and (22), and considering just one single disclination at the origin, one obtains a R? divergence
with the system size R which again, as in the case of dislocations, disappears if two oppositely
charged disclinations are considered.

In the hexatic phase, i.e. the phase intervening between the crystal and the isotropic phase,
free disclinations become energetically possible. The interaction between these disclinations
are screened by the dislocations. Applying the Debye-Hiickel approximation, it is now possi-
ble to integrate out the dislocation degrees of freedom in eq. (24), and to replace eq. (24) by a
pure disclination Hamiltonian but with effective disclination-disclination interactions (Chaikin
and Lubensky 1995; Nelson and Halperin 1979). One obtains

T d’q 1
Hpise =Ka(2)? | 55— —Q+E Y s 25
b Al 3) / (27)2 QQS(Q)S( Q) + ;Sa 25
with the coupling constant
2F.a?
Kq= 22 (26)
ap

The appearance of the dislocation core energy and radius in this constant — which can be
interpreted as a Frank constant — is all that remains of the dislocation degrees of freedom.
Eq. (25) in direct space reads

Hpise = KA R Z soserIn T’ 4 g Zs 27)
oz;éa/



16

with éa,a/ = 7"y — Ty, and a, for the disclination core radius. So, neglecting for a moment the
angular term in eq. (17), we may summarize this section by observing that both a dislocation

pair (b = —b2) and a disclination pair (s; = —s3) attract each other via a pair-potential of
the form
Bo(r) = clng (28)
(6 = 1/kT) where
_f ira% for a dislocation pair (29)
_# Ifgﬂ for a disclination pair (30)

The pair-potential (28) is used in the next section to estimate the mean distance between defect
pairs.

0.2.4 Melting in two stages

As already mentioned at the end of section (0.2) the key idea of the KTHNY melting theory
is that the unbinding of defect-pairs is responsible for the melting. More specifically, the un-
binding of dislocation pairs produces a first transition at 7;,,, and the subsequent unbinding of
dislocations into disclinations produces a second transition at a somewhat higher temperature
T;.

The presence of free dislocations in the system is not compatible with the translational
symmetry. So, at temperatures 7; > T > T;, where free dislocations (but not yet free
disclinations) can exist, the crystalline order is destroyed. The system has undergone a phase
transition from solid to another phase, the hexatic phase. This phase is characterized by an
algebraic decay of the orientational order parameter but an exponential short range decay of
the translational order parameter. Then for 7' > T; free disclinations can occur which now
destroy the residual orientational order. The system has entered into the isotropic fluid phase
in which we have an exponential decay of both orientational and translational order parameter.

On the basis of this qualitative picture we can now estimate the two temperatures 7,,, and
T; using the defect pair interaction Hamiltonian in eq. (28) to calculate the mean quadratic
distance between defect pairs,

(r?) = [ d*rr2eBvm) _2-c o
[ d?re=Bur) 4—c

€29

where we had to assume that ¢ > 4. For ¢ — 4, the expression diverges, <r2> — 00, meaning
that the defect pair dissociates. Hence, the dislocation unbinding temperature for a dislocation
pair results from

BKa}
47

or, equivalently

— 4 (32)

Ka3
167

kT, = (33)
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where we used eq. (29), while the unbinding temperature for a disclination pair follows from
eq. (31) and eq. (30),

BKam
18 — 4 (34)
or
KAﬂ'
kT, = . 35
B ™ (35)
In other words, from eq. (32),
. K(T)ag
lim ———~— =167 (36)
r—1; kBT
and from eq. (34),
. Ku(T) 72
| = — 37
TiI?; kT m GD

where the negative sign as superindex of T},, and 7T serves as a reminder of the fact that both
limits are approached from below, reflecting the pair stability condition ¢ > 4. Both equations
link a transition temperature to those elastic constants which are characteristic of the phases
involved. These equations define the point where microscopic details of the defect interaction
are transformed into a prediction based purely on macroscopic information; they are important
predictions of the KTHNY theory as their derivation is based on the essential KTHNY idea
of defect-unbinding. Eq. (37) should be seen in connection with eq. (26), and is correct as it
stands. Equation (36), however, needs a further modification discussed in the next section.

0.2.5 The Halperin-Nelson recursion relations

The physical picture underlying eq. (36) is that on approaching 7,,, the crystal softens until
K (T)/T is small enough to allow dislocations to unbind. The crystal melts. The temperature
dependence of K (T') can result partly from higher inharmonic terms in the crystal phonon
Hamiltonian, an effect which is called ’thermal softening’ (section 7.7 in (Kleinert 1989)).
However, the elastic constants can also and additionally be softened by dislocations. So, the
role of the Young’s modulus here is two-fold: It determines the dislocation unbinding, but
is itself influenced by the system of interacting dislocations. This very fact suggests that
recursion relations are needed to obtain the elastic constants in presence of a gas of interacting
dislocations.

These recursion relations have been derived by Nelson and Halperin (1979). These authors
decompose the strain tensor into a smoothly varying part ¢;; () for the perfect crystal and a
singular part uf;”g (7) which is due to the dislocations, and write the full system Hamiltonian
H as a sum of eq. (3) and (18)

1
H=Hy+Hp=g / d%(w;é + 2u¢ij¢>ij) + Hp (38)
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where the perfect crystal part Hy resorts just to ¢;;(7). Ho(\, 1) depends on A and p of a
system that is thought to be defect-free. The idea now is to renormalize both constants A — A
and p — pg such that Hy(A, p) + Hp can be replaced by a single Hamiltonian Hy (AR, ptr)
for an ersatz system without dislocations but with somewhat softer elastic constants. The
effect of the dislocations is thus absorbed into the elastic constants. This defect-mediated
softening adds to the thermal softening.

Of crucial importance in this theory is the dislocation core energy F., appearing in the last
term of eq. (18), or, more precisely, the quantity y = e~ F</*T" To quadratic order in y and for
a triangular lattice, Halperin and Nelson derived coupled differential equations for K (1), u(1),
A(1) and y(1), all four quantities expressed as a function of the renormalization flow variable
l. I = 0 corresponds to the unrenormalized values, [ — oo to the renormalized ones. We here
repeat only the renormalization group equations for K (1) and y(1),

dK (1) 3 9 KQ)/sn 3 o KQ)/sn

TS = Sy Io (K(l)/87r> — Smye I8 (K(l)/87r) (39)
dy(l) _ K 2 K(l)/167
5 = (2 - 8—ﬂ)y(l) + 2my“e IO(K (l)/87r)

where I and I; are modified Bessel functions. Let us discuss the solutions to these differential
equations considering a special 2D system which can be realized by colloidal particles and
which will be properly presented and discussed in the next sections. We consider a 2D system
of particles interacting with a pair-potential of the form Bv(r) = I'/(r/dn,)? (see eq. (58))
where d,,,, is the next neighbor distance and I' is the interaction strength parameter, inversely
proportional to the temperature 7. For ' — 0 the Young’s modulus for this system can be
calculated (Zanghellini et al. 2005) yielding

BagK = 1.258T . (40)

Assuming this value for K and furthermore a core energy of E. = 5.4kT as the [ = 0 values
we can now numerically solve eq. (39), for a number of different temperatures as done in
Fig. (7a). We observe that for low temperatures, i.e. if I' > 60, y vanishes for [ — oo, and we
obtain 1/Kr = 1/K(co) which is always higher than 1/K(0). That means that the crystal
in our ersatz system has no defects but is somewhat softer since Kr < K(0). For T" < 60,
the fugacity does no longer vanish and a renormalization becomes impossible. This marks
the point where the crystal is no longer stable against free dislocations; it melts. Analyzing
eq. (39) one can show that the so-called separatrix (line separating the stable from the unstable
solutions) will always terminate at ag BKgr = 167, see Fig. (7a).

With this latter result we can come back to eq. (36). The unbinding temperature for two
dislocations in the presence of a gas of interacting dislocations is quantified by eq. (36) but
with K to be replaced by Kg,

KR(T)G,Q

lim 9 — 167 . 41)

T—T;, T
This is a universal relationship which should be true for all 2D systems that show a defect-
mediated melting, no matter what form of interaction they are characterized by. The same
result is obtained by balancing the energy and entropy of an isolated dislocation as was done
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Figure 7: a), upper panel: Solutions to the Halperin-Nelson renormalization-group equations in eq. (39)
for a 2D system with 1/r® pair-interactions. T' can be considered as inverse temperature. Each line cor-
responds to one temperature and shows (y (1), K (1)) as a function of [ starting from (y(0), K ~*(0)).
For temperatures where (1) vanishes in the limit [ — oo, the crystal is stable against dislocation un-
binding, while it is unstable for temperatures where y(l) — oo for | — oco. The melting temperature
(here I' ~ 60) belongs to the line separating both regimes (the “separatrix™). b), lower panel: Young’s
modulus as a function of T for a system with 1/7> and 1/r pair interactions. In both systems Young’s
modulus has been approximated using elastic constants (i) from a zero temperature calculation (dashed
lines), (ii) from finite temperature simulations (solid thin line), and (iii) from integrating the KTHNY
equations, eq. (39) (thick solid line). The difference between the curves for (i) and (ii) show the ef-
fect of thermal softening, while the difference between the curves for (ii) and (iii) is produced by a
defect-mediated softening. Simulation data for 1/r® are marked with filled circles.
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by Kosterlitz (1974). Eq. (41) is therefore called the Kosterlitz-Thouless criterion for melt-
ing. Since we can expect the Lamé coefficient 1 to be zero above T,,, Kg(T) should be
discontinuous at the melting temperature.

Fig. (7a) provides us with K vs I". However, we have to take account of thermal soft-
ening as well. Fig. (7b) shows the Young’s modulus for a warm and defect-free crystal with
pair-interaction 1/7 as obtained from Monte-Carlo simulations (Zanghellini et al. 2005) (thin
solid line). The results for finite temperature are markedly different from the 7" = 0 approx-
imation used above, eq. (40). Taking these finite-temperature results as initial conditions for
solving eq. (39) (and assuming E. = 5.7kT) one obtains K(I") with the correct low tem-
perature behavior (thick solid line in Fig. (7.b)). It passes through 167 at I' = 60. Note the
considerable extra softening produced by the defects near the unbinding temperature (differ-
ence solid and thin solid line). Fig. (7.b) also shows the corresponding results for a system
with 1/r interactions as realized for instance by electrons on liquid helium.

We observe that a similar renormalization procedure for the Frank constant in eq. (37)
is not needed. Here it is not the other disclinations but the dislocations that are assumed to
affect the Frank constant, and their screening effect is already taken into account in going
from eq. (24) to the effective Hamiltonian in (25), with the effect that K 4 is given by eq. (26).
We should finally also remark that the Frank constant should be discontinuous at 73, just as
Kg(T)isforT > T,,.

0.2.6 Correlation functions
The translational order

Let us now consider the order in the crystalline phase, i.e. for’T' < T,,. Crystals in 2D systems
are well-studied, mainly in context with problems in surface science. Many monolayers are
approximate realizations of systems in mathematical two dimensions, see chapter (4.2) and
(4.3) in (Bruch et al. 1997). Perhaps the most spectacular feature of 2D crystals is the fact that
the mean-square displacement (|i(R)|?) is diverging, with @(R) being the displacement of a
particle from its lattice site R. Tt is therefore more fruitful to study the mean-square relative
displacement

Wi; = (Au;(R)Au,(R)) (42)

with Au;(R) = u;(R) — u;(0). For large separations R an asymptotic evaluation of this
quantity gives the simple expression (Nelson and Halperin 1979; Bruch et al. 1997)

R
Wij = 77&%5,']‘ In E (43)

with
KT 3ug+ g
TURAE 2R + AR

(44)

The logarithmic divergence with R in eq. (43) is typical of 2D crystals, it is not found in 3D
crystals. With equation (43), one can now estimate the Debye-Waller correlation function
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CJ(R') appearing in the structure factor
S(@) = e 7Cx(R) (45)
R

which is approximately given by
Cy(R) ~ e~ 396 Wii | (46)

Inserting eq. (43) into this equation yields

q*ain/2
a) o (47)

C4(R) ~ <—
(R~ (%
In 3D crystals S(q) has a set of §-function Bragg peaks, occurring at the rec1procal lattice
vectors (7, and due to the finiteness of @(R) the Debye Waller function Cx (R) tends to

nonzero constants at large . Not so in 2D. Here, @(R) is not finite and C 5 a(R R) tends al-
gebraically to zero for large R like ~ R~"7¢ with an exponent ng = 77G2a /2. And the
d-functions of the Bragg peaks in 3D crystals are in 2D crystals replaced by power-law singu-
larities ~ |§ — G| 2175,

Ca (ﬁ) can be related to the envelope function of the pair distribution function

v
9(r) = 35(D_ (7= 7iy)) (48)
i,j7i

and is thus easy to observe also in real-space. For T' > T,,, one observes a different decay
behavior. Here Cx(R ) decays exponentially ~ e /¢, We note that one can get access
to the important elastlc constants via 7 from eq. (44) either by analyzing the mean-square
relative displacement in eq. (42) or, alternatively, by studying the decay behavior of Cé(]:f)
(by analyzing g(r) or S(q)). For T'— T, the index 7 also goes to an universal value (just
as the Young’s modulus in eq. (36)) and can in principle also be used to check the KTHNY
melting scenario (see (Zanghellini et al. 2005)).

In summary, the decay of Cé(ﬁ) to zero is a signature of the fact that there is now true
translational order in 2D crystals. Nevertheless it is just a slow power law decay which is
markedly different from the exponential decay one finds for T > T,,. This allows us to speak
of a quasi long-range order and to still distinguish the crystalline from the two other phases.

The orientational order

The bond orientational order in triangular lattices is usually quantified using the following
orientational correlation function

96(r) = (w6 (P (0)) (49)

with

" 1O~ oo, ()
rl):;l;e A (50)



22

®
I J
o /o

|
NSO /\ .
N s 0i
Y J
s N
0| ~
7 1 ~

7

O | ®
O

Figure 8: *Bonds’ (dashed lines) joining a central particle to its six neighbors. Each bond makes an
angle 0 with a fixed reference axis.

where n; is the number of neighbors of the particle at 77 and 0;; (7}) is the orientation relative
to some fixed reference axis of the bond between a particle at 7 and 7; (Fig. (8)). In the
crystalline phase this function is a constant (Nelson and Halperin 1979),

3 (51)

which in a real-space experiment is easy to measure and provides us access to the shear mod-
ulus. Now, in the hexatic phase, that is above T,, but below the second transition temperature
T;, g¢ shows an algebraic decay behavior ~ r~"6 with an exponent

_18kT
T nKy

U (52)

which is related to the Frank constant, eq. (26). Recalling equation (37), we observe that

1
lim ng — —. (53)
T—>T; 4

Finally, at T' > T the orientational order decays again exponentially ~ e~"/¢¢ with a corre-
lation length & that goes like In &g ~ |T' — T;|~'/2 for T — T;". We have already remarked
in the discussion of (37) that K 4 jumps discontinuously to zero at T}, implying that 7 here
jumps to infinity so that the algebraic decay of gg comes to a natural end at 7;.

0.3 Experiments in two dimensions

In the following we list a few 2D experiments that have been designed to study phase-transitions
in 2D and, in particular, to check the predictions of the KTHNY theory. While this section
focusses more on the experimental techniques, the next section will be devoted to a discussion
of the results and their implications regarding the theory of melting.
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0.3.1 Systems not involving colloids

As outlined in the introduction, 2D colloidal systems are in the focus of this article, but there
are numerous other appropriate systems to study 2D melting. The following list of them is far
from being complete and is more intended to demonstrate the rich variety of 2D systems with
which different parts of the KTHNY theory have been tested.

Grimes and Adams (1979) were the first to study the transition from a 2D fluid phase
to a 2D crystal of electrons (“Wigner” crystal) on the surface of fluid helium by measuring
microwave absorption. Since these measurements are not sensitive to the orientational cor-
relation, the existence of the hexatic phase could not be demonstrated. Dimon et al. (1985)
and Heiney et al. (1982) investigated a monolayer of Xenon atoms on Graphite and found
some evidence for hexatic phase from x-ray scattering data, but were not able to control the
effect of the periodic substrate on the phase behavior. By comparison with simulations Li and
Rice (2005) showed that the out-of-plane motion of a monolayer of Pb atoms on a PbGa alloy
liquid-vapor interface suppresses the hexatic phase. Free standing liquid crystal films showed
short-range translational and long-range orientational order (Pindak et al. 1981; Davey et al.
1984), but such films consist of a few molecular layers and are therefore certainly not purely
2D. Detailed studies of the temperature-dependence of the correlation length in thin block
copolymer films have been reported by Segalman et al. (2003). In Angelescu et al. (2005) a
first-order melting transition was observed in a similar system, but the role of the finite film
thickness and the coupling to substrate inhomogeneities remained unclear. Indications of a
hexatic structure were also found in a stationary non-equilibrium system of magnetic bubble
arrays driven by an AC magnetic field (Seshadri and Westervelt 1992) and in thin layers of
granular systems where thermal motion was induced by mechanical vibrations (Reis et al.
2006; Zheng and Grieve 2006). Some evidence for two-step melting was seen in layers of
mm-size particles which were levitated against gravity by vertical electric-field-driven cur-
rents in dense dusty plasma (Melzer et al. 1996; Quinn and Goree 2001). The use of the latter
systems as model systems for 2D melting is not evident given the fact that they are driven far
out of thermodynamic equilibrium.

0.3.2 Colloidal systems with screened Coulomb interaction

We next turn to 2D systems built out of micron-sized colloidal particles. They have many
advantages compared to the systems mentioned above. The most important advantage of us-
ing colloidal particles is that they are big enough to be directly observable by means of video
microscopy. At the same time they are still small enough to perform thermally driven (“Brow-
nian”’) motion and can thus be considered as a statistical ensemble in thermal equilibrium. Not
only the length but also the time scale for configuration changes are in an easily observable
regime, since it takes typically seconds for them to diffuse across their own diameter. Using
digital image processing the trajectories of the particles can be extracted and analyzed numer-
ically on all relevant time and length scales.

In (Murray and Winkle 1987; Tang et al. 1989) charged spherical colloids (polystyrene-
sulfonated micro-spheres) were used in aqueous suspension. Confinement to two dimensions
was realized by squeezing the suspension between two nearly parallel glass plates providing a
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thin film. The colloids strongly ionize (typically 20000 e~ for particles with 0.3 um diameter
(Murray and Winkle 1987)) and the colloid-colloid pair-interaction is a screened Coulomb
potential where the screening is ultimately due to the counterions in the solution. Murray et
al. were the first who identified the hexatic phase in colloidal systems by measuring structure
factors of this system which were similar to those given in Fig. (2). In addition they determined
the distance dependence of the orientational correlation function in eq. (49). They used a
wedge geometry of the glass plates so that the thickness of the fluid layer increased from
1 £ 0.3 gm with an inclination of 4 + 0.5 x 10~ rad in one direction. Due to the additional
interaction of the colloids with the glass plates a density gradient of the particles appeared in
equilibrium with low density in the thin-film region. Because of this, different types of crystal
symmetries were found in the arrangement of the colloids along the density gradient. In the
high density region, 2000 particles were observable in the field of view of 38 x 25 um? while
in the low density only about 100 particles were traced.

In order to avoid a possible influence of the inherent particle density gradient a flat cell
geometry was used by Tang et al. (1989). Two disc-shaped glass plates with different diam-
eters were glued concentrically on top of each other, so that the smaller one would act like
a stamp when pressed against a third plate. The space between the first and third glass plate
was sealed by a rubber O ring near the circumference. The ring-like space between the small
plate and the O ring was used as a 3D reservoir for the 1 um sized spheres. Reducing the
gap between the plates two and three below ~ 5 um the 2D population of colloids expanded
into the reservoir. In this way a crystal of 3430 particles was molten over 7 h to a liquid with
1460 particles in the field of view of 277 x 222 um?. A faster melting rate did not seem to
change the results. The hexatic phase was observed but the possibility of a coexistence of the
isotropic liquid and the hexatic phase could not be ruled out.

0.3.3 Colloidal systems with hard core repulsion

Marcus and Rice (1996) (see also (Marcus and Rice 1997)) set up a colloidal system with
essentially hard core repulsion combined with a short range square attractive part. They used
polymethylmetacrylat microspheres sterically stabilized against van der Waals attraction with
a layer of poly(12-hydroxystearic) acid. Particles of a diameter 0.93 um were suspended in
aqueous sucrose solution (10% by weight) in order to eliminate sedimentation. The spacing
between the walls of a flat thin glass cell was found to be optimal at ~ 1.2 um thereby avoid-
ing immobilization at lower and out-of-plane motion at higher distances. The quantity to be
varied in different measurements was the particle density. Marcus and Rice clearly demon-
strated the existence of a hexatic phase and observed a phase equilibrium isotropic-hexatic
and hexatic-crystal at both transitions. Again the influence of the confining walls remained
unclear. Studying a colloidal system with perfect hard-core interaction Karnchanaphanurach
et al. (2000) were not able to identify a hexatic phase.

0.3.4 Colloidal systems with dipole interaction

The first 2D melting study using induced dipole interaction was published by Kusner et al.
(1994). These authors introduced the idea that the effective system temperature can be varied
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in situ at constant particle densities by controlling their induced dipole moment through an
external field (Kusner et al. 1995).

Polystyrene particles of 1.6 ym diameter in aqueous solution were confined between par-
allel glass plates of 2.4 um spacing. The colloids were sulfonated with a concentration of
2 x 1013 SOy -surface groups. The glass plates were covered with a 20nm Au film serving as
transparent electrodes for the electric field which polarizes the colloids and induces a electric
dipole-dipole inter-particle potential. The electric field had a frequency of 3.75 M H z in order
to prevent screening by counterions. If water and polymer particle are treated as isolating
dielectrics the pair potential is given by
€wl(€w — €5)2 18

(2€w+€s)2 T73<‘E'w‘2> ) (54)

U(r) =
where €,, and €, are the dielectric constants of water and colloid, respectively, 7 is the radius
of the sphere and E,, is the electric field. The phase behavior depends on the ratio of the

potential versus the thermal energy described with the dimensionless interaction strength '
defined as

U(Tws) 1

=9
kpT Tays

(55)

where rys = 1/,/7p is the Wigner-Seitz radius with p being the 2D density. I' can be
interpreted as an inverse temperature and is externally controlled by means of the electric
field E'w. The interaction strength is the only parameter controlling the phase-behavior of the
system. At high I" the sample is a hexagonal crystal whereas for low I' it is an isotropic fluid.
Exploiting g¢(r)-data and taking screening of counterions into account Kusner et al. found a
hexatic to crystalline transition at I',,, = 60 £ 3.

The key problem in the 2D colloidal systems discussed above is the confinement between
glass plates. First, the neighborhood of the plates implies that the screening length of the
Yukawa potential due to counterions in presence of the glass surfaces is ill defined and may
evolve in time over the experiment. In addition, surface roughness or impurities at the plates
may lead to pinning centers for the colloidal particles. We next describe in detail the 2D
system of superparamagnetic colloids at the free air-water interface which circumvents these
problems. It was originally developed by Zahn (1997) (see also (Zahn et al. 1997; Zahn et al.
1999; Zahn and Maret 2000)) and later improved by Keim (2005).

The experimental setup consists of spherical colloids (diameter d = 4.5 pwm) that are
confined by gravity to a water/air interface formed by a water drop suspended by surface
tension in a top sealed cylindrical 8 mm diameter hole of a glass plate, see Figs. (9) and
(10). Due to Fe,O3 doping the particles are super paramagnetic and rather heavy with a
mass-density ~ 1.5 10~3kg/m? and a susceptibility per particle Y = 6.47 * 10~ 1 Am? /T
obtained by SQUID measurements. A magnetic field H applied perpendicular to the air/water
interface induces a magnetic moment M = xﬁ in each particle which leads to the repulsive
dipole-dipole pair-interaction:

po m?_po XPH?

Emagn:&r. B 4n 8

) (56)
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Figure 9: Superparamagnetic colloids confined at a water/air interface due to gravity (side view). A

magnetic field H perpendicular to the interface induces a magnetic moment m leading to a repulsive
interaction.

with x being the susceptibility per colloid. The interaction strength I' is then defined by

E\nagn at the nearest neighbor distance d,,,, = (7p) /2
Ermaon 272 . 3/2 1
p = Bmagn _ po XHZ-(mp)" (57)
kBT 47 k’BT Tsys
so that the particle-particle interaction becomes
r
R — 58
/BU(T) (r/dnn)3 ( )

The ensemble of particles is visualized with video microscopy from above and the signal
of a CCD 8-Bit gray-scale camera is analyzed on a computer. The field of view has a size
of 835 x 620 um? containing typically up to 3 - 103 particles, whereas the whole sample
contains about up 3 * 10° particles. In order to get size, number, and positions of the colloids
the image is binarized: All pixels with a gray level above a suitable cut-off are set to white
whereas pixels below the cutoff are set to black. The software recognize areas of connected
pixels (called blobs) with respect to the uniform background and the amount of connected
pixels of each blob gives the projected size of the colloid and the barycenter gives its position.
The average projected size of the colloids gives information about vertical position of the
interface relative to the focus of the camera. If the camera is moved in vertical direction
particle images are smallest in focus and bigger out of focus (see Fig. (10)). This information
is used to maintain a flat water surface by compensating the loss of water due to evaporation
(even if the sample is encapsulated). A computer controlled syringe driven by a micro-stage
controls the volume of the droplet and thereby the curvature of the interface. Depending
on the optical components used a resolution down to 250 nm in the vertical position of the
interface in the middle of the droplet relative to the camera is achieved. An active regulation
of the vertical camera position is overlayed to get a completely flat surface. Setpoint is the
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Figure 10: Schematic drawing of the regulation of the interface using the projected size of the colloids.
Colloids appear smallest when in focus. Deviations from the setpoint of projected size are corrected by
the volume of the droplet using a syringe.

number of particles in the field of view chosen to reach a homogeneous number density profile
throughout the whole sample. L.e. if the interface is convex particle density will rise in the
middle of the sample due to gravity. The camera is lifted by a micro-stage, the interface gets
out of focus which is compensated by the regulation of the syringe. In this way fluctuations
around the setpoint of particle number are suppressed below 1% over several weeks and the
biggest observed particle-density gradient in the horizontal plane is less than 1%. The latter
regulation is done by the variation of the inclination of the whole experimental setup. The
inclination is also controlled actively by micro-stages so that the resolution is in the range
of a =~ 5 prad providing best equilibrium conditions for long time stability. The images are
analyzed with a frame rate of 250 ms and the coordinates of all particles are recorded for every
time step containing the whole phase space information. The thermal activated out of plane
motion of the colloids is in the range of a few tenth of nm so the ensemble is supposed to be
an ideal two dimensional system.

0.4 Colloidal experiments and the KTHNY theory

0.4.1 Direct imaging of defect structures

The video-microscopy technique allows to directly image physical processes related to mo-
tions of the colloids. This technique thus seems to be particularly useful for testing the
KTHNY theory — a theory whose powerful predictions are all based on the simple micro-
scopic picture of disclination and dislocation unbinding. One may wonder if it is possible to



28

s

S R
“‘-‘-'-‘::';%-w"‘ig s

Figure 11: Voronoi construction for a particle configuration with 9000 colloidal particles inside the
hexatic phase. Sixfold-coordinated sites are white, fivefold sites are red, sevenfold sites are green and
eightfold coordinated sites are filled green.

directly observe these unbinding events and to connect these observations to the breakup of
translational and orientational order.

The answer to this question is far from being clear as the colloid KTHNY literature on
this point is full of irritating and partly contradictory findings. A good example is the classi-
cal work of Murray and Winkle (1987) who clearly derived two-stage KTHNY-melting from a
correlation length analysis but failed to find paired dislocations in the solid phase or free dislo-
cations in the hexatic phase. Instead, they observed in the fluid phase islands of six-fold coor-
dinated particles surrounded by a network of grain-boundaries of fourfold, fivefold and seven-
fold coordinated particles. Inside the hexatic phase, these grain boundaries did not disappear,
but neighboring grains began to orient with respect to each other. A similarly contradictory
result has been obtained by Tang et al. (1989); these authors were unable to observe any sort
of unbinding of isolated dislocation into disclinations, but identified a grain-boundary-induced
melting mechanism with spontaneous cluster formation of dislocations and dislocation pairs
and even the formation of interconnected liquid-like islands. And, still, they clearly derived
correlation lengths and power-law exponents in good agreement with the KTHNY theory.

Kusner et al. (1994), on the other hand, found agreement with all elements of the KTHNY
theory including its microscopic explanation of melting. Only a few dislocations paired over
short distances were found in the solid phase, while in the hexatic phase free dislocations
scattered uniformly throughout the images were identified. No clustering of dislocations or
any sort of grain-boundaries was observed. Finally, the fluid phase was characterized by a
breakup of bound disclination pairs and the formation of dislocation aggregates.
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A large number of Voronoi constructions of colloid configurations are presented and dis-
cussed in the paper of Marcus and Rice (1997) one of which is shown in Fig. (11) for a
configuration inside the hexatic phase. Bound dislocation pairs occur as clusters of two five-
fold and two sevenfold particles. Unbound free dislocations made up of individual tightly
bound fivefold and sevenfold sites are clearly observable. Marcus and Rice analyzed whole
sequences of these configurations and found that dislocations and clusters of dislocation de-
fects appear and disappear on the time scale of successive video frames (30 ms), and that their
absolute locations are temporally uncorrelated. Thermally activated bound dislocations are
thus stable only over a period much shorter than 30 ms. It is the presence of a small steady-
state concentration of unbound dislocations (stemming from a dissociation of these short-lived
bound dislocations) that causes the slow algebraic decay of the bond-orientational order in the
hexatic phase.

Such Voronoi constructions of configurations were also taken by Marcus and Rice to
demonstrate that there exists states with coexistence between the hexatic and the fluid phase,
and between the solid and the hexatic phase - a result which implies that the liquid — hexatic
and hexatic — solid transition is first-order and which the authors explain with the particulars
of their pair-potential.

A more quantitative way of analyzing direct images of colloidal configurations has been
suggested by Eisenmann et al. (2005) who used these configurations to compute probabilities
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Figure 12: Temperature-dependence of the pair-interaction energy S Hp of dislocation pairs in a col-
loidal system with 1/7 pair-interactions. The dislocation pairs have anti-parallel Burgers vectors.
Circles: video-microscopy experiment, filled triangles: simulation, solid line: prediction according to
eq. (17) and (18). Melting transition at I',,, = 60.
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of defect formation. Assuming a Boltzmann distribution one can transform these probabilities
into defect interaction energies and can then test the validity of the pair-interaction Hamilto-
nian in eq. (17) and (18). Fig. (12) shows a plot of the dislocation pair energies against the
inverse temperature I" for dislocation pairs in the ground-state, i.e., having the smallest sep-
aration possible on a triangular lattice. Comparison of the measured data with the solid line
representing the prediction based on eq. (17) reveals rather good agreement which is the more
remarkable as no adjusting parameter has been used. Equally good agreement was found with
respect to the distance-dependence of eq. (17), but not regarding the angle-dependence where
discrete lattice effects become important. Still, on the whole the results of Eisenmann et al.
(2005) clearly support the fundamental interaction Hamiltonian which the whole KTHNY
theory is based on.

Summarizing this section we may say that the analysis of direct images of colloidal config-
urations does not always lead to unambiguous results. Murray and van Winkle, for instance,
conclude from their observations that although the microscopic ideas of dislocation and discli-
nation unbinding seem to be too naive the main predictions of the KTHNY theory are still in
good agreement with the experimental results. Is that possible? Can a theory deliver correct
results if its fundamental ideas are inappropriate? One can equally well challenge these qual-
itative observations which in many cases are derived from inspecting and interpreting just a
few selected images, and can ask the question whether these observations can compete with
“hard” quantitative results that are obtained from averaging over thousands of these images.
One should keep this question in mind in the following sections, where we turn to the discus-
sion of just these quantitative results.

0.4.2 Correlations: translational and orientational order
Structure factor

To set the stage we get back to the structure factor defined in eq. (2) and plotted in Fig. (2).
Similar plots have been analyzed by Marcus and Rice for a colloidal system with hard core
repulsion. The shape of these peaks can be related to the underlying symmetry of the system
(Davey et al. 1984). This is illustrated in Fig. (13) taken from the work of Marcus and
Rice (1996); this figure shows fits of the transverse angular dependent line shape of S(q)-
patterns such a those in Fig. (2). While the angle varies, the radius is fixed to wave vectors
showing the strongest peak. There is no angular dependence for the isotropic phase in (A),
while the hexatic line shape (B) agrees well with a square-root Lorentzian (solid line S(x)
V1/[(x — @)? + (3)2] with « being the peak position and /3 its width) and the shape in the
crystalline phase (C) with a simple Lorentzian function (solid line S(x) o 1/[(x — a)? +
(8)2]). These fits support the idea that the system really possesses three distinct phases, each
with its own symmetry and characteristics.

Pair correlation functions

To study the symmetries of these phases also in real space we now turn to the pair distri-
bution function g(r), defined in eq. (48) to quantify the translational order, and to the ori-
entational correlation function gg(r) defined in eq. (49) to characterize rotational order. In
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Figure 13: Angular-dependence of shape of the Bragg peaks for (A) the isotropic fluid, (B) the hexatic
phase, and (C) the crystal.

video-microscopy experiments, both correlation functions can be easily obtained from the
recorded positions of the colloids. In case of true long-range order the envelope of these cor-
relation functions will approach a nonzero constant at large distances. As already explained
this is strictly true only regarding the orientational symmetry in the crystal but not for the
translational order which is never really long-ranged. The translational correlation function
therefore decays algebraically, i.e. like ~ R™"¢, even deep inside the crystalline phase, but
exponentially ~ e~ /¢ everywhere outside the crystalline phase, see discussion of egs. (47)
and (48). We also recall from section (0.2.6) that a similar algebraic decay is found also for
the orientational order parameter in the hexatic phase. In the isotropic fluid, both correlation
functions decay exponentially with a temperature-dependent correlation lengths £ and &. All
these features can be seen in Fig. (14) taken from the experiment of Marcus and Rice (1996)
where the particle density has been varied all the way from the crystalline phase (A) through
the hexatic phase (B) to the isotropic fluid (C).

Fig. (15) taken from (Keim et al. 2006; Lin et al. 2006) shows similar results for the orien-
tational correlation function produced from the video-microscopy data of colloids interacting
via a magnetic dipole interaction and correlation functions of extensive simulations carried
out by Lin et al. (2006). The oscillations reflect the shell structure of neighboring particles
and is due to the fact that colloids with large deviations from their typical equilibrium distance
are poorly correlated in their bond orientation. Also, the statistical weight of the maxima and
minima is very different. Whereas the histogram of particles with distances near the maxima
increases linearly with r, the corresponding histogram for the first minima shows a different
dependence and is significantly smaller. This is clear; many particle pair distances contribute
to the maxima, but only a few to the minima. At large distances then, these differences are
washed out and the oscillations fade away.

Fig. (16) taken from (Zahn and Maret 2000; Lin et al. 2006) shows the same behavior,
but now gg is calculated as a function of time (Domb and Lebowitz 1983). In the crystalline
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Figure 14: Correlation functions g(r) and g¢(r) for different colloid densities. The crystalline phase
(A) has quasi-long-range translational and long-range orientational order (indicated by the envelope
function). The hexatic phase (B) has short-range translational and quasi-long-range orientational order
and the isotropic fluid (C) has translational and orientational short-range order. The curves have been
shifted for clarity.

phase where only bound dislocation pairs with relatively short lifetimes are thermally excited
the bond orientation of a particle is conserved for long times. If, however, in the hexatic phase
dislocation pairs dissociate and distinct dislocations diffuse through the ensemble the bond
orientation will decay on long time scales with an algebraic behavior. In the isotropic fluid
free disclinations diffuse throughout the ensemble leading to a fast exponential decay. Again,
ge(t) are shown for experiment and simulation. Hence, the same qualitative behavior of the
decay of the correlation is found in space and time.

0.4.3 Elasticity: macroscopic criteria of KTHNY melting

We have seen in sec. (0.4.1) how problematic it is to directly observe those microscopic events
which the KTHNY theory postulates to determine the melting process: The dislocation and
disclination unbinding. There is however an alternative, though less direct way to confirm that
it is these two processes that are responsible for the melting process. This way is related to
the two equations (37) and (41).

In sec. (0.2.4) we showed how the disclination unbinding temperature 7; can be related to
the temperature-dependent Frank constant through the 72 /7 criterion, eq. (37), and the dislo-
cation unbinding temperature 7, to the Young’s modulus through the 167 criterion, eq. (41).
Both equations thus link a transition temperature to those elastic constants which are charac-
teristic of the phases involved. The equations (37) and (41) are, first of all, predictions that are
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Figure 15: Orientational correlation function ge(r) for various system temperatures in a log-log plot.
Experimental results in the upper panel, simulations in the lower panel. In the lower panel a curve with
critical value 776 = 1/4 is shown and g6 (0) is normalized to 1. lim,—ogs(r) # 0 in case of long-range
orientational order indicative of the crystalline phase, g¢(r) ~ =™ in case of quasi-long-range order
typical of the hexatic phase and gg(r) ~ e~ "/%6(0) if the order is short-ranged (isotropic liquid).
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remarkable in their simplicity, but also in their universality: Whatever 2D system one consid-
ers, KTHNY predicts that the first transition is reached when the Young’s modulus takes the
value 167 and the second is reached when Frank’s constant takes the value 72/7. Secondly,
these are obviously macroscopic criteria as no detail of the pair-potential needs to be known,
but only the temperature-dependence of the Young’s modulus and the Frank constant which as
elastic constants are macroscopic quantities. But, thirdly and most importantly in the current
context, these criteria are the two mathematical statements which best summarize the micro-
scopic picture of melting suggested by the KTHNY theory; they define the point where we get
direct access to the essential KTHNY idea of defect-unbinding.

To understand this latter remark, recall that eq. (37) and (41) was derived by searching for
those temperatures where the mean defect-pair distance (r?) in eq. (31) tends to infinity. That
we can derive similar criteria for both 7; and T, is thus simply due to the fact that both the
disclination-disclination interaction and the dislocation-dislocation interaction have the same
distance-dependent interaction potential in eq. (28) which differ only in its prefactor ¢ which in
turn depends on nothing but Young’s modulus in one case and on Frank’s constant in the other
case, but not on any particulars of the pair-potential. We also understand that both criteria just
reflect the unbinding condition ¢ = 4, i.e. the temperature where the respective unbinding
for each defect type is completed. In that sense, these two criteria represent the most direct
way to check the microscopic principles of the KTHNY theory: If we find these criteria to
be satisfied in 2D systems, then we may safely assume that these principles must be effective,
irrespective of whether we are able to directly observe them in our video-microscopy images
or not.

Each continuous symmetry which is broken at a phase transition to a discrete one is associ-
ated with a specific modulus of stiffness. An obvious example of this principle from everyday
experience is the liquid-to-crystal transition where a non-zero shear modulus goes along with
the appearance of the solid crystal. In two dimensions this is reflected by the behavior of
the Young’s modulus which jumps from zero to 167 at T;,,. As is evident from eq. (9), the
Young’s modulus is determined by the shear-modulus. Thus, also the shear modulus takes a
non-zero value below 7;,, which is in agreement with our experience that a crystal can resist
to shear stress. The same applies to the transition from the liquid to the hexatic phase: the
Frank constant defined in eq. (11) jumps from zero to 72/ at T;, thus reflecting the fact that
the hexatic phase, but not the liquid can resist rotational stress.

Young’s modulus

In principle one could use the exponents of the algebraic decay of the translational correlation
function in the crystalline phase, eq. (43), to determine the elasticity as function of tempera-
ture, see Zanghellini et al. (2005), but here we will present the results that are based on an
alternative approach.

Keim et al. (2004) describe a method to determine the elastic dispersion relation of a two
dimensional colloidal system. These relations quantify the ‘microscopic spring constants*
of the crystal in g-space. Analyzing the low-q behavior of the longitudinal and transversal
bands one can extract the Lamé coefficients A and p which can then be used to determine
the Young’s modulus. This allows to measure this modulus as a function of temperature and
to compare it to the function Kr(7') obtained from the Halperin-Nelson recursion relations
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Figure 17: Experimental check of the Kosterlitz-Thouless criterion of melting expressed by eq. (41):
the Young’s modulus as a function of T for a system with 1/7® and 1/r pair interactions. The theoretical
curves are explained in Fig. (7.b), the experimental data points are for colloids with a pair interaction
1/72 and electrons with pair interaction 1 /7.

in eq. (39) — thus allowing a direct check of the 167 criterion in eq. (41). We present in
Fig. (17) the results for Kz (T") which indeed approaches the universal value 167 at T,,, (von
Griinberg et al. 2004; Zanghellini et al. 2005). For the colloidal system the data points and the
KTHNY prediction agree within the experimental error bars. The essential conclusion here
is that based on thermally excited phonon softening one would expect the Young’s modulus
K to cross 167 at I' = 51, while including the additional effect of the dislocations leads to
a crossing of the 167 line at a higher value of I' (I';,, = 60). This difference shows that the
temperature dependence of K is not only produced by interacting phonons, but near I';,, also
by dislocations. Data points follow the curves derived from eq. (39). Note that from these
observations alone nothing can be inferred about the order of the transition.

Also shown in Fig. (17) are the corresponding experimental and simulated curves for a 2D
electron solid on the surface of liquid helium. Fisher et al. (1979) determined the temperature
dependence of the shear modulus of the 2D electron solid in a computer simulation and fitted
his data points to K(I') = 0.6386(" — 30.8), which in Fig. (17) is seen to cross 167 at
I" = 109.5. The HN renormalization relations (with E, as free parameter, see Zanghellini et al.
(2005)) leads to a correction of this value to I' = 143. Figure (17) shows the experimental
data points for a 2D electron system on helium as obtained by Gallet et al. (1982) from
a measurement of the coupled electron-substrate transverse sound mode for three different
electron densities. All three data sets pass through 167 at a common value of T" which is close
to 143, but unfortunately fail to fall onto a common curve as one would have expected. While
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the reason for this discrepancy remains unclear, at least one experimental data set is in good
agreement with the curve given by the KTHNY theory.

It is interesting to compare the sequence of melting points predicted by eq. (41) on the ba-
sis of different approximations for K in the electron system (interaction 1/r) and the colloidal
system (interaction 1/73). Estimating K by the finite-7" approximation, and by its renormal-
ized values, respectively, we find in the electron system a shift of I',,, at the transition from
109.5 — 143 while in the colloid system it shifts from 51 — 60. The shrinking of the shift
range when going from a 1/r to a 1/73 pair potential seems to suggest that a even more
short-ranged potential (such as e.g. 1/7°) would lead to an even smaller interval for these two
temperatures, making it increasingly difficult to distinguish between a defect-mediated and a
phonon-mediated melting scenario. This observation is also supported by results obtained in
hard-core systems (Karnchanaphanurach et al. 2000).

Frank’s constant

The procedure to use video-microscopy data for a check of the 72/7 criterion, eq. (37), is
straight-forward: One just needs to extract ng from the decay-behavior of g¢ and can then ex-
ploit eq. (52) to obtain the Frank constant K 4. This was done in (Keim et al. 2006), again for
a 2D colloidal systems with dipolar interaction. Fig. (18) shows the temperature dependence
of K4 within the temperature range (57 < I' < 60) of the hexatic phase. Both transition
points 1/T; ~ T'; = 57 and 1/T,,, ~ I';,, = 60 have previously been determined by a quanti-
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Figure 18: Experimental check of the Kosterlitz-Thouless criterion of melting expressed by eq. (37):
Frank’s constant as a function of I' becomes 72/7 at T;. At T, it diverges indicating that the perfect
orientational symmetry of the crystalline phase is approached.
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tative analysis of the decay behavior. Knowing I'; one can now determine the value of K 4 at
;. It indeed crosses 72/ at the transition and disappears deeper in the isotropic fluid. There
is however no sudden jump to zero below I'; which is an artifact probably due to the method
chosen to determine K 4 via 7 as 7 is not defined in the isotropic fluid. On the other hand, at
the hexatic — crystal transition K 4 diverges, since the crystal has perfect orientational order
corresponding to infinite rotational stiffness. In (Keim et al. 2006) the characteristic of the
divergence is further analyzed.

To summarize this section, the microscopic melting mechanism of the KTHNY theory
seems to be confirmed by the results presented in Fig. (17) and Fig. (18). Dislocation pair
unbinding indeed takes place at T,,, otherwise the 167 criterion could not be full-filled, and
also disclination unbinding seems to happen at T} because also the 72/ criterion is satisfied.
However, we want to stress that this is not incompatible with the observations made by several
groups that dislocations and disclinations may form clusters and that the unbinding events are
not easy to be observed directly. Still the dominant effect seems to be the unbinding of defect
pairs.

0.5 Conclusion

This article is an attempt to review our current understanding of melting in two dimensions as
revealed from experiments on monolayers of colloidal particles. Since the pioneering theoret-
ical predictions of Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY) many macro-
and microscopic aspects of the melting process have been studied experimentally and numer-
ically. Some of the early experiments such as those on 2D electronic and atomic systems
are hampered by the failure to resolve motions of single particles and by a coupling to the
third dimension (e.g. the substrate) which is difficult to evaluate and to control. Macrocopic
systems like granular layers, magnetic bubble arrays and dusty plasmas allow easy particle
tracking but are intrinsically athermal and necessarily driven out of thermodynamic equilib-
rium. Numerical simulations still suffer to some extent from the limited number of particles
and simulation times not always long enough to reach equilibrium conditions.

Because colloidal particle systems confined to monolayers minimize the above shortcom-
ings they have been exploited successfully over the past two decades and revealed many new
features of the melting process. The most prominent results are:

o In electrically charged colloids with screened Coulomb interaction as well as magnetic or
dielectric colloids with (1/7%) dipole-dipole interaction one clearly observes a two step
melting scenario from hexagonal crystals through a hexatic phase into the liquid.

e The KTHNY-theory provides a prediction of the melting temperature I',,, which can be
calculated from the renormalized Lamé coefficients in agreement with experiments of
dipolar systems.

e The spatial and temporal correlation functions for bond orientational gg(r) and transla-
tional order g(r) follow KTHNY predictions: When going from the crystalline through
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the hexatic to the liquid state the decay of gg(r) goes from constant to algebraic to ex-
ponentially short range, while g(r) goes from algebraic to exponentially short range to
exponentially short range. The values of the exponents agree with KTHNY.

e This goes together with the appearance of bound dislocation pairs in the crystal, which
dissociate at T},, into isolated dislocations in the hexatic phase, which at T} further disso-
ciate into isolated disclinations in the liquid state. While each defect type can be easily
identified in video-microscopy images, it is difficult to directly observe the defect pair-
unbinding at 7; and 7}, or to relate such observations to the melting process.

e The appearance of bound and free dislocations gives rise to an extra softening which
adds to the usual thermal softening of the crystal produced by interaction phonons. The
Young’s modulus in the crystalline phase is found to fall below the usual phonon induced
value when approaching 7;,,, and decreases in agreement with the renormalization pre-
diction of Halperin and Nelson ultimately reaching the universal values of 167. This
finding supports the renormalization procedure of Halperin and Nelson. In fact the most
quantitative way to test the KTHNY idea is to check whether the 167 criterion for the
Young’s modulus and the 72/ criterion for Francks elastic constant are satisfied at T,
and T;, respectively, since these conditions are derived directly by the divergence of the
distance of dissociating defects-pairs on the microscopic level.

In 2D colloidal systems with 1 /r3-interaction, both criteria are satisfied. This result
confirms the most essential idea of the KTHNY theory: that defect-unbinding is the
microscopic process responsible for melting.

e The distance and temperature dependent distributions of the dislocations in the crys-
talline phase allow to directly and quantitatively check the Hamiltonian of interacting
dislocations which is the starting point of KTHNY-theory.

Many of these results were obtained thanks to the 2D system of super paramagnetic col-
loids confined to the free air-water interface of a flat hanging drop. This system is ideally 2D
since the out-of-plane motions of particles are negligibly small compared to their diameter.
The inter particle interaction strength - and hence the effective system temperature - can be
tuned from outside by an external magnetic field. It is totally calibrated which, combined with
accurate determination of the particle trajectories, allows to quantify all physical properties
of the system. The system size in terms of numbers of particles and observation times are
larger than what can be reached in typical numerical simulations. This ensures, in particular,
observations close to thermal equilibrium. Last but not least different physical quantities as
obtained all from the same system can be directly quantitatively compared.

Yet, there are still quite a few open issues in 2D melting:

What determines whether or not the KTHNY-melting of the 2D-system is preempted by
a first-order transition? Numerical simulations (Strandburg 1986) on 2D systems varying the
core-energy in the dislocation Hamiltonian seem to suggest that the cross-over from first-order
melting to two-step second-order melting is controlled by the core energy F. of a dislocation



40

and should occur at E.-values around 2.84kT (Chui 1982; Chui 1983). The physical pic-
ture is that for small enough E,. isolated disclinations are unlikely to form as dislocations
start to arrange in grain boundaries at high defect densities instead of dissociating into discli-
nations. It is clear that more long-range inter particle potentials give rise to larger E. and
hence favor two-step melting. Our experimental observation that the distance between the
observed melting temperature and the value obtained by extrapolating the curve of thermal
softening (Fig.17) is larger for the unscreened (1/7) Coulomb potential than for the (1/r%)
dipole-dipole potential is consistent with this argument. The same holds for the observation
of E. =~ 5.3kT (Zanghellini et al. 2005) for the magnetic dipole system which indeed shows
2-step melting. For now, the observations of phase equilibria in the copolymer system (Ange-
lescu et al. 2005) and the inherent structures (Chen et al. 1995; Somer et al. 1997) can not
be put into this scheme, since the core energy is not really known in those systems. It would
thus be important to further quantify this issue by comparative studies on power-law poten-
tials with different exponents and exponential potentials with different ranges. Unfortunately
it seems difficult, if not impossible, to realize experiments where the range of the potential is
changed under otherwise identical conditions. These investigations will therefore be a privi-
leged playground for numerical simulation work.

Another yet related question concerns the role of interactions between defects. In some
of the colloidal experiments (Murray and Winkle 1987; Tang et al. 1989) indications of weak
clustering of dislocations can be seen, but this phenomenon does not seem strong enough to
drive the system into phase separation. How does the clustering affect KTHNY-melting? This
is certainly not an academic question, as this clustering may determine the whole melting
process. Recall the observations of Murray and Winkle (1987) who found in the fluid phase
islands of six-fold coordinated particles surrounded by a network of grain-boundaries, which
remained in the hexatic phase while the islands started to orient themselves with respect to
each other. This observation is not compatible with the principles of a dilute gas of dislocations
according to the KTHNY theory, and still all quantitative results in (Murray and Winkle 1987)
were in agreement with this theory.

Nelson and Halperin used a Hamiltonian describing dislocation pairs with four (5-7-7-5)
coordinated particles but they stated, that this is the lowest order of topological defect-pairs.
Higher orders of bound dislocations are possible as long as the sum of the Burger vectors
equals zero. Their dissociation at 7;,, will not change the picture of KTHNY-melting but it
changes the possibility of distinguishing between isolated dislocations and disclinations in the
fluid phases due to the high density of topological defects. The identification of the defects
is usually done by counting the nearest neighbors but that is not strictly true as one has to
focus on Burger vectors in case of dislocations. In the isotropic liquid the concept of Burger
vectors breaks down simply as there is no lattice on which they are defined. So five- and
seven-folded particles have to be identified as disclinations even if they are neighbored. Since
eq. (37) is derived by the divergence of the distance of disclinations finding K4 — 72/7 the
microscopic KTHNY-picture is checked. Taking into account dislocations of higher order in
KTHNY-theory may resolve the problem of heterogeneous distribution on short length scales
of dislocations at finite density.

Colloids would also be appropriate to study the role of lateral confinement on the melting
process, since boundaries can be easily realized by hard mechanical walls or soft walls (Wille
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2001) generated by optical tweezers (Ashkin et al. 1986). Finally colloids open a rich terrain
for crystals with 2D structures other than simple hexagonal. As an example, by tilting the
magnetic field out of the vertical direction in the 2D magnetic dipole experiment, i.e. away
from the normal of the layer, rhombic phases have been obtained (Eisenmann et al. 2004b).
This suppresses certain orientations of dislocation pairs in the crystals, stabilizes orientational
correlations thereby widening the hexatic phase and, at larger tilt angles, results in anisotropic
melting into a smectic-like phase (Eisenmann et al. 2004a). Thus, there are many more 2D
phase transitions to be studied.
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