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Abstract
Ordering phenomena in colloidal dispersions exposed to external one-dimensional, periodic
fields or under confinement are studied systematically by Monte Carlo computer simulations.
Such systems are useful models for the study of monolayers on a substrate. We find that the
interaction with a substrate potential completely changes the miscibility of a binary, hard disc
mixture at low external field amplitudes. The underlying ordering mechanisms leading to this
laser-induced de-mixing differ, depending on which components interact with the substrate
potential. Generic effects of confinement on crystalline order in two dimensions are studied
in a model system of point particles interacting via a potential ∝ r−12. The state of the system
(a strip of width D) depends very sensitively on the precise boundary conditions at the two
confining walls. Commensurate, corrugated boundary conditions enhance both orientational
order and positional order. In contrast, smooth repulsive boundaries enhance only the
orientational order and destroy positional (quasi-)long range order. As external fields have a
strong impact on the elastic behaviour of colloidal crystals there is a need to analyse the elastic
response in such systems for the field-free case first. To this aim we study the strain–strain
correlation functions in a two-dimensional crystal formed by super-paramagnetic colloids,
as monitored by standard video microscopy.

(Some figures in this article are in colour only in the electronic version)

Minimization trends in physics and technology have caused
a lot of interest lately in monolayers and their interactions
with a substrate. The assembly of nanoparticles into spatially
extended regular structures is the first step towards a new
generation of materials and devices. Colloidal dispersions
in external fields or under confinement are valuable model
systems for the systematic study of such settings, as they
are experimentally directly accessible via laser scanning
microscopy. In addition their effective interactions can
be tailored to specific needs by various means. In two
dimensions (2d) such systems are often used for the study of

monolayers on a substrate. Monodisperse 2d colloidal systems
with a substrate potential have been studied extensively
in experiments [1, 2], computer simulations [3–8] and
theory [9–11] over the last few decades. Re-entrant phase
transition scenarios like laser-induced freezing (LIF) and
laser-induced melting (LIM) have been observed in such
settings. We address the question of how the addition
of another length scale to such a system influences the
intricate competition between adsorbate–adsorbate interaction
and adsorbate–substrate interaction by studying a binary 50%
mixture under the influence of a one-dimensional (1d) spatially
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periodic substrate potential in section 1. Another way to
influence the order in 2d systems is by geometric confinement,
which will be important in the development of novel devices.
Depending on the precise settings confinement can either
enhance or destroy ordered structures. In section 2 we
deal with the generic effects of geometric confinement by
analysing a system of model colloids confined within a quasi-
one-dimensional strip between two parallel boundaries using
Monte Carlo simulations. External fields not only influence
the ordering, but also the elastic properties of the colloidal
dispersions. These are also an important aspect in the
search for novel material in soft matter physics. In order to
gain a deeper understanding of the elastic response in such
systems, we study the strain–strain correlation functions of a
monodisperse, 2d, triangular colloidal crystal in section 3.

1. A binary mixture in a 1d spatially periodic
potential

The intricate competition between adsorbate–adsorbate and
adsorbate–substrate interactions is the origin of a complex
phase behaviour observed in monodisperse monolayers on a
substrate. Re-entrant phase transitions like LIF and LIM are
known to occur in various systems (e.g. [2, 4, 5]). In this
section we show that adding another competing length scale to
such a set-up generates novel interesting phenomena [12–14].
We will concentrate in this section on a regime with low
external potential amplitudes V0/(kBT ) � 1.5. Following the
approaches in the studies of monodisperse systems, we use an
external potential given by

V (�r) = V0 sin
( �K · �r

)
, �K = 4π

a
(1, 0). (1)

Here a is the lattice parameter of the S1(AB) lattice [15],
which provides the densest packing for the studied equimolar
binary mixture (diameter ratio σB/σA = 0.414). All lengths
are measured in units of σA, therefore the dimensionless
number density is � = N

A σ 2
A. A wavelength λ = 2π/| �K |,

commensurate to the lattice planes of this crystalline structure,
is chosen for the periodicity of the substrate potential. The
situation is schematically illustrated in figure 1. The colloidal
particles are modelled by hard discs. Monte Carlo simulations
in the NV T ensemble with periodic boundary conditions are
employed. In order to facilitate equilibration we use a cluster
move [16] and additional non-local moves, in which particle
displacements, which are integer multiples of the potential
wavelength, are attempted.

Even in the field-free case binary mixtures in 2d are
known to show interesting phenomena. As has been recently
observed experimentally [17], introducing small particles into
a system of large particles breaks the spanning network of large
particles. This results in a competition between free volume
and configurational entropy and leads to clustering [18] and
structural crossover [17, 19]. Nevertheless in a purely repulsive
system the effect is too weak to drive phase separation. In
general one needs to distinguish the following three cases:

(a) only the smaller component interacts with the external
field;

2V0

y x

a

Figure 1. Schematic illustration of the external, 1d spatially periodic
substrate potential V (�r) and the S1(AB) lattice structure relative to
it. The larger component of the binary mixture is displayed in black
(online: blue), the smaller in grey (online: orange). a is the lattice
parameter of the S1(AB) lattice, while V0 is the amplitude of the
external potential.

(b) both components interact with the external field;
(c) only the larger component interacts with the external field.

For a detailed discussion of the phase behaviour for case (a),
when only the smaller component interacts with the external
potential, see [12]. In summary we find for this case that at
intermediate to high external field amplitudes the coupling to
the external field induces a coexistence of a S1(AB) crystal
with an equimolar fluid. This regime is followed by a
fissuring regime for higher dimensionless number densities �,
in which the larger component forms a square lattice. This
lattice structure has a tendency to form fissures parallel to the
modulated direction of the external field, in which the smaller
components can accumulate.

For low potential amplitudes V0 we find a novel
phenomenon. In contrast to the monodisperse LIF scenario
a laser-induced de-mixing sets in for all three cases. We
observe a coexistence of a small component enriched fluid with
a droplet of a monodisperse crystalline structure formed by
the larger component. This is visualized in figure 2, where
overlays of all configurations of the simulation (corrected for
the centre-of-mass movement) are shown. The positions of
the larger component are denoted by black (online: blue)
points, while those of the smaller component are plotted in
grey (online: orange). The data was taken at a number
density � = 1.71. A heuristic argument by Buhot et al
[20] yields a diameter ratio of σB/σA = 1/100 as the
upper limit for possible phase separation in binary hard
disc mixtures. Nevertheless, exposing an equimolar binary
mixture with diameter ratio σB/σA = 0.414 to an external
field interferes with the competition of free volume and
configurational entropy in a controlled way by introducing
the constraint of energy minimization. Phase separation is
induced. Subfigure 2(c) shows case (c) at V0/kBT = 0.5.
The formation of the monodisperse lattice structure is induced
directly by the interaction with the external field in this
case. The resulting structure is aligned in its orientation
with the minima of the potential. As the periodicity of the
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(a) (b) (c)

Figure 2. The laser-induced de-mixing regime. Shown are overlays of centre-of-mass motion corrected configurations from simulations
at � = 1.71. The positions of the larger component are displayed in black, those of the smaller component in grey (online: red).
(a) V0/kBT = 0.6 for case (a), (b) V0/kBT = 0.3 for case (b) and (c) V0/kBT = 0.5 for case (c).

external potential is not commensurate with a monodisperse
triangular lattice of the larger component, a rhombic structure
forms. In contrast at V0/kBT = 0.6 the monodisperse
crystalline structure observed for case (a), when only the
smaller component interacts with the external field, is a
triangular lattice. This difference can be explained by the
ordering mechanism, which leads to the de-mixing in this case.
As the smaller component tries to optimize its alignment with
the potential minima it forms chains along the y direction.
This chain formation has a lower number density than the
fluid mixture. Under the constraint of a fixed overall number
density, the larger component is thus indirectly induced to form
a dense packing, i.e. a triangular lattice structure in order to
facilitate the energy minimization of the smaller components.
For case (b), when both components interact with the substrate
potential, both types of ordering mechanisms are at work.
Therefore only at even lower potential amplitudes do we
observe a pure de-mixing, as shown in subfigure 2(b). The
de-mixing is followed by a regime in which the competition of
the ordering mechanisms leads to a domain growth of rhombic
monodisperse and square lattice bi-disperse areas.

In conclusion, we have shown via Monte Carlo
simulations that the miscibility of a binary hard disc mixture
can be tuned in a controlled way by exposing the mixture to
a one-dimensional spatially periodic potential. Weak external
fields induce a phase separation into an ordered monodisperse
phase of the larger component and a disordered fluid phase.

2. Confinement: a quasi-one-dimensional system

In this section we analyse the nature of the ordered phase for
a model of colloidal particles confined within a quasi-one-
dimensional (q-1d) strip between two parallel boundaries, or
walls, separated a distance D in two dimensions (2d)4. Using
Monte Carlo simulations we find [22, 23] that at densities
typical of the bulk 2d triangular solid the order in the q-1d strip
is determined by the nature of the boundaries. While for a
suitably corrugated boundary potential order is enhanced, for
a uniformly repulsive smooth boundary potential only ordering
normal to the walls is enhanced (‘layering’); parallel to the wall
it is destroyed.

4 For colloidal crystals in d = 3 confined in narrow slit pores, see [21].

Ordering in strips and half-planes have been stud-
ied [24–28, 21, 29] in the past for spin systems primarily in
the context of surface critical phenomena where both suppres-
sion or enhancement of order near free boundaries have been
observed.

Studies of the nature of ordering for quasi-1d strips have
been done for Wigner crystals [30], repulsive magnetorheolog-
ical (MR) colloids [31, 32] and for colloids between walls in
non-equilibrium situations [33], for instance. The former sys-
tem is relevant, for example, for electrons on the surface of
liquid helium that is confined in a quasi-1d channel, where un-
usual ordering phenomena were found [34], and for confined
dusty plasmas [35]. MR colloids under confinement are of in-
terest for microfluidic applications, see [31, 32] for references
and discussions of further related systems. Unusual mechani-
cal behaviour of a related system has also been reported [36],
and in [31] it was noted that the properties of the confined
system approach those of the unbounded system surprisingly
slowly as the channel width is increased. Early experiments
on a model hard disc system [37] also showed unconventional
behaviour. Clearly, the understanding of confined 2d crystals
is far from being complete, and it is the purpose of the present
work to contribute to a resolution of these puzzles by combin-
ing simulations of a generic model with a suitable theoretical
analysis.

For finite D, the system is quasi-one-dimensional, and
hence one might argue that long range order (LRO) is
destroyed, for systems with short range forces [24]. Indeed,
a 1d harmonic crystal displays a fluid-like structure factor [38]
and this accounts well for real quasi-1d chain compounds such
as Hg3−δAsF6 (where δ � 1) [39]. However, for confined
colloidal crystals the situation should be more subtle, since
the confinement between hard repulsive boundaries reduces
fluctuations in the direction normal to the boundaries, causing
a pronounced ‘layering effect’. Ordering is also strongly
influenced by the boundaries, for example it is known that
a boundary corrugation potential [24, 40] enhances the order
parallel to the boundaries.

The interaction among colloidal particles may be
conveniently parametrized by V (r) = ε(σ/r)n where the
exponent may vary from n = ∞ in the case of hard sphere
colloids [41–44] to n = 3 for super-paramagnetic [45, 46]
dipolar colloids. We have chosen a potential with n = 12
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and with a cutoff at rc = 5σ , at a temperature kBT/ε = 1
(where kB is the Boltzmann constant) and density (choosing
units such that σ = 1) � = 1.05. This choice retains
the advantage of a smooth potential which is also sufficiently
short ranged for computational convenience. Further, we
believe that the phenomena reported here are independent of
the detailed nature of the potential. At the chosen density
melting in the bulk occurs for kBT/ε ≈ 1.35 in this model [47].
We choose two types of wall potentials, with walls oriented
parallel to lattice axes of the triangular lattice: (i) (planar
walls) Vwall(r) = εwall(σ/|x − xwall|)10 for a particle at
position r, where the x direction is chosen perpendicular to
the boundaries, and the positions xwall of the two walls are
a distance D apart that is an integer multiple of the distance
a
√

3/2, a being the lattice spacing of an ideal triangular
lattice compatible with the chosen density. The strength of
this potential is typically εwall = 0.0005kBT (also much
stronger wall potentials were tested). (ii) Structured walls
causing a periodic corrugation of the potential were created
by choosing two rows of particles fixed in the positions of
this ideal triangular lattice, and these particles interact with
the mobile particles with the same potential V (r) as specified
above. Summing up these potentials due to the fixed particles
defines the corrugation potential Vstruc(r) (structured walls) of
such structured boundaries. A sketch of the configurations in
front of the two wall types is given in figure 3.

We use standard Monte Carlo methods [48], where single
particles are selected at random to attempt a small random
displacement in a square of linear dimension κ = 0.206
centred at the old position of the particle. Typical runs were
performed for systems containing between D × L = 20 × 20
and D × L = 60 × 60 particles, carrying out 106 Monte Carlo
steps (MCS) per particle in each run. In the direction parallel
to the walls, periodic boundary conditions are used. For the
sake of comparison, runs for ‘bulk’ systems (with no walls
and periodic boundary conditions in both directions) were also
done. Some runs were also made for a strongly elongated
geometry (D × L = 20 × 500) to probe the behaviour of
displacement correlations at large length scales.

Both types of boundaries enhance the order in the x
direction near the walls. This enhancement of order in the
direction normal to the walls is even more pronounced (and
of larger range) when we approach the transition to the fluid
phase [22, 23]. While in the bulk the well-defined orientational
LRO and nonzero shear modulus of the 2d crystal have both
disappeared in the fluid, some wall-induced orientational LRO
persists in the thin strip [22, 23].

In contrast, in the direction parallel to the boundaries
the behaviour in the two cases differs dramatically: for the
structured boundary, the structure factor S(q) exhibits the
sharp Bragg peaks expected for a crystal5 (figure 4(a)). For the
structureless repulsive boundary, a typical fluid-like structure
factor results, which is almost in quantitative agreement with

5 Note that for orderings commensurate with the corrugation potential the
statement of Mermin [49] that crystals in d = 2 have only orientational LRO
and no positional LRO does not apply here. This situation is reminiscent of the
behaviour of thin films adsorbed on substrates where true LRO commensurate
with the substrate corrugation potential can occur [40].

x

y

Vwall

V(r)

x

y

Figure 3. Schematic descriptions of the two types of walls used in
this paper in order to confine the triangular crystal. Walls are always
oriented along the y axis. The upper part shows the case of planar
walls, described by a repulsive potential V planar

wall = εwall(σ/|x −
xwall|)10. The position xwall is chosen such that it replaces a row of
particles otherwise present at this distance. The lower part shows the
case of ‘structured walls’, created by fixing two rows of particles
precisely at the positions of the ideal triangular lattice (with the same
lattice spacing a0 as in the bulk). The frozen particles interact with
the mobile ones with the same pair potential V (r) as is acting
between two mobile particles a distance r apart. In this way,
‘structured’ walls provide a potential corrugated in the y direction
and precisely commensurate with the considered crystal structure.

a fit to the S(q) for 1d harmonic chains [38] (figure 4(b)),
although we deal here with a system of 30 rows confined
between two boundaries, rather than a true 1d system. This
reduction of order in the y direction along the boundaries is
also seen directly when one superimposes the positions from
1000 configurations of the particles (figure 4 inset). This
lack of order concerns the positional LRO only, however: the
orientational LRO due to the strong confinement in layers
parallel to the walls is rather well developed, and even better
for the planar walls rather than the structured walls [22, 23].
The analogy to 1d harmonic chains suggests that for T → 0
the range of positional LRO gets gradually very large, but true
LRO only occurs for T = 0. (Note that also Ising model strips
of finite width have a transition only at T = 0 for any finite
value of D, but there the correlation length below the critical
temperature Tc of the 2d model is much larger, of the order
D exp(constant × D).)

The fact that confinement by planar structureless
boundaries turns a colloidal 2d crystal into a kind of smectic
phase [50] (or strongly modulated fluid, respectively) also
shows up when one examines ‘bulk’ properties of the strip like
the elastic constants (figure 5). While for structured walls one
reaches the behaviour of the bulk rapidly, for planar walls one
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Figure 4. Static structure factor S(q) plotted versus qd/2π (d being
the distance between lattice axes in the y direction parallel to the
boundaries), for structured walls (a) and planar walls (b). All data are
for systems of 900 particles. In case (b) a fit to the S(q) for a
harmonic chain [38] is included. The wavevector q is oriented along
the y direction. The insets in (a) and (b) show the corresponding
particle configurations for eight layers adjacent to the wall on the
left; 1000 configurations out of a run lasting 106 MCS are
superimposed after putting the centre of mass into the origin of the
coordinate system each time. Note the prominent anisotropy of the
density peaks in the inset of (b).

rather has C33(bulk) ∼ 2C33(n), which implies a vanishing
shear modulus. The elastic constants could be determined
directly from an analysis of the configurations of the particles
applying the method of Sengupta et al [51, 52]. Particularly
remarkably the increase of strip thickness (or number n of rows
in the strip, respectively) does not cause any visible approach to
bulk behaviour. The question how, for the elastic constants, the
thermodynamic limit is approached is intriguing. The planar
boundary provides an elastic distortion of long range [53] to
the crystal, and our results imply that in d = 2 this distortion
disturbs the positional LRO.

This lack of positional LRO may be understood from a
calculation of the displacement correlation function B(y) =
〈[uy(y) − uy(o)]2〉, where uy is the displacement away from
a reference lattice in the direction parallel to the walls and
the angular brackets signify ensemble averaging. Using a
harmonic elastic Hamiltonian for the strip geometry, this may
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Figure 5. Elastic constants in units of kBT/σ 2 for structured walls (a)
and planar walls (b) plotted versus the number of rows n between the
walls. The Voigt notation for the elastic constants is used. Horizontal
straight lines show the bulk values of the corresponding triangular
crystal, for which the symmetries C11 = C22 and C12 = C33 hold.

be written as
B(y) = 2

∑
qx = 2πnx

D

∑

qy= 2πn y
L

〈|u2
q|〉[1 − cos(qy y)]

〈|u2
q|〉 = kBT

(λ + 2μ − P)q2
q̂2

y + kBT

(μ − P)q2
(1 − q̂2

y).

(2)

Here, nx and ny are integers, q̂y = qy/q and the Lamé
coefficients λ and μ are those of a bulk soft disc solid
at the same density, while P is the overall (nonzero)
hydrostatic pressure [51, 52]. The result of this calculation
is shown in figures 6(a) and (b). We observe a crossover
from the logarithmic increase of mean-square displacements
B(y) ∝ ln y with distance y (characteristic for 2d solids)
to a linear increase (1d systems [38]) at a distance of
order D ln(D/a) [22, 23] which is cut off by the periodic
boundary conditions for small systems. The direct evaluation
of B(y) for the soft disc system with periodic boundary
conditions is also shown in figure 6(a) and agrees well with
the harmonic calculation within the error bars of the former.
The corresponding calculation with planar walls shows an
enhancement of the displacement fluctuations parallel to the
walls for the lattice layer closest to the wall figure 6(b).
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Figure 6. (a) Comparison of 〈[uy(y) − uy(o)]2〉 versus y (in
logarithmic scale) for the soft disc solid at ρσ 2 = 1.05 and
kBT/ε = 1 (filled circles) with the results of the harmonic theory (�
)
for a system with D = 20 and L = 500. The input Lamé coefficients
λ = 42 and μ = 41 in units of kBT/σ 2 are those of the bulk soft
discs at the same ρ and T , with the pressure P = 17.4 in units of
ρkBT . Inset shows the crossover of 〈[uy(y) − uy(o)]2〉 in the
harmonic approximation from an initial logarithmic to a linear
growth for various D and L signifying destruction of positional
LRO. Note that for small systems the linear part is cut off due to
finite size. (b) Comparison of 〈[uy(y) − uy(o)]2〉 versus y, for the
harmonic solid (1) (the line is a guide to the eye), soft disc solid with
periodic boundary conditions (2) and soft disc solid with planar walls
(3) at ρσ 2 = 1.05 and kBT/ε = 1. All three systems have 2000
particles (D = 20 and L = 100). The displacement correlations are
calculated only for the layer closest to the wall for (3). Note the
enhancement of fluctuations for the system with planar walls.

This behaviour is quite similar to that seen in the XY
model [29] with free boundary conditions. Fluctuations of
the displacement perpendicular to the walls are, of course,
suppressed.

In summary, we have demonstrated that confinement
of 2d colloidal crystals by external boundaries has subtle
effects on their structure. The least disturbance is caused by
‘structured boundaries’ (rows frozen in the perfect crystalline
order). For planar boundaries, however, the positional LRO
is destroyed, even for very thick strips. This phenomenon
is not a standard surface-induced melting, however, since a
very strongly layered structure (reminiscent of a smectic) is
maintained. Just as the 2d XY model below Tc is in a
critical state (power-law decay of correlations implies infinite

correlation length), the 2d crystal is in a similar critical state
too, and therefore sensitive to boundary conditions over very
large distances. We believe that these effects should be easily
observable in experiments involving confined colloids.

3. Strain–strain correlation functions in a
colloidal crystal

The knowledge of the elastic properties of these model systems
is important in the search for novel materials in soft matter
physics. Strain–strain correlation functions give access to more
detailed information on the elastic behaviour of the system,
as they describe the non-local mechanical response of a soft
solid in two dimensions. Such non-local elastic effects are
important for situations where strain gradients are large [54]
or set-ups for which the relevant linear length scales of the
solid are of the order of the coarse graining length scale of
classical elasticity theory. Both of these criteria are satisfied
in colloidal solids under usual experimental conditions [55].
We analyse the fluctuations of particle coordinates in order
to gain knowledge of the elastic properties of the colloidal
crystal. Recently there has been a lot of interest in obtaining
the elastic moduli of soft solids [56, 57] from fluctuations
of particle coordinates [51, 46, 58–60]. These methods have
several advantages. Particle configurations of the colloidal
crystal can be obtained by standard video microscopy [57] and
for the calculation of the elastic moduli no external forces need
to be applied, which may change the very properties that are
being measured.

The description of a 2d crystal via a formulation of the
elastic free energy as a functional of the strains opens up a way
to derive analytic expressions for the strain–strain correlation
functions Gi j(�x, �x ′) in the crystal. These are connected to the
non-local compliance χi j , which is defined as the strain εi j( �x ′)
produced at position �x ′ due to a stress σi j (�x) at position �x by
χi j = (kBT )−1Gi j . The starting point is the dimensionless
elastic free energy functional

F = kBT

a2

1

2

∫
dr

3∑
i=1

{aie
2
i + ci (∇ei)

2 + c′
i (∇2ei)

2}. (3)

Energy and length scales are set by kBT and the lattice
parameter of the triangular lattice a = (2/(3

√
�))1/2,

respectively. The coefficients ai(i = 1–3) are the elastic
constants and ci , and c′

i set the length scales over which strain
fluctuations decay. The functional is written in a harmonic
form of those linear combinations of the strains, which are
relevant for a solid in two dimensions: e1 = ∂ux/∂x +
∂uy/∂y (volume), e2 = ∂ux/∂x − ∂uy/∂y (deviatoric) and
e3 = (∂ux/∂y + ∂uy/∂x)/2 (shear). Care is taken that the
colloidal crystal reaches a thermodynamic equilibrium before
the measurement. Therefore we can assume ∂σi j/∂x j = 0,
which ensures the mechanical stability of the crystal. Within
classical, linear elasticity theory the strains must fulfil St.
Venant’s compatibility condition ∇ × (∇ × ε)T = 0, if
there is to be a unique relation between the displacement
field and the corresponding strains. Under these constraints
only one strain variable is independent and the elastic free
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Figure 7. Overlay of all configurations obtained in the crystalline
phase at 
 = 150. The boxed section corresponds to the analysed
area. The reference lattice was obtained from the average of these
particle positions.

energy functional can be written in terms of this strain
variable in a harmonic form. Switching to a formulation
in Fourier space, the equipartition theorem can be used to
extract the analytic prediction for the corresponding strain–
strain correlation function. For a more detailed presentation
of the derivation see [61]. As an example we present a study
of the shear fluctuations in a colloidal crystal. The analysed
volume V is embedded in a larger colloidal crystal; therefore
these fluctuations can be studied by evaluating the fluctuations
in 2θ = (∂uy/∂x − ∂ux/∂y). The analytic prediction for the
strain–strain correlation function corresponding to this strain
variable is given by

G̃2θ 2θ (k �= 0)−1 = (
a3 + c3k2 + c′

3k4

+
2∑

j=1

(a j + c j k
2 + c′

j k
4)(Q̃ j3(k))2

)
(Q̃3θ (k))2;

G̃2θ 2θ (0)−1 = a3/4.

Coupled strain variables are related to the independent
strain variable via kernels Q̃i j : ẽi = Q̃i j ẽ j . The kernels
relevant for the analytic formulation of G̃2θ 2θ are

Q̃3 2θ = 1

2
(k4

x − k4
y)/

(
(k2

x − k2
y)

2 + k2
xk2

y

(
4a1 + 2a3

a1 + a2

))

Q̃13 = (4a2 − 2a3)/(a1 + a2)(kxky)/(k
2)

Q̃23 = −(4a1 + 2a3)/(a1 + a2)(kx ky)/(k
2
x − k2

y).

Experimental data was obtained with an experimental set-up,
which is an improved version of [46]. Spherical colloids
(diameter d = 4.5 μm) are confined by gravity to a water/air
interface formed by a hanging water droplet. The field of view
was 835 × 620 μm2 containing typically 2 × 103 colloids,
whereas the whole system has a size of 50 mm2 and contains
about 3 × 105 colloids. The analysed volume V contains
840 particles arranged in a triangular lattice. The particles
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Figure 8. (a) Real space surface plot of the measured strain–strain
correlation function V G2θ2θ . (c) Real space surface plot of V G2θ2θ in
a sample section containing defects. In both cases the analysed
volume is V = (L/a)2 with L = 12.881a.

are super-paramagnetic. Therefore a magnetic field �H applied
perpendicular to the water/air interface induces a magnetic
moment �M = χM �H in each particle. This leads to a
repulsive (inverse cubic) dipole–dipole pair interaction with
the dimensionless interaction strength given by 
, the ratio of
potential to thermal energy. Thus 
 can be interpreted as an
inverse temperature. Coordinates of all particles at each time
step are analysed and the trajectories are recorded for 2–3 h.
The data was taken in the solid phase, as can be seen in figure 7,
where an overlay of all configurations obtained during the
measurement shows a triangular lattice structure. The boxed
section is the analysed volume V . Strains are calculated with
respect to the average particle positions, as reference (corrected
for centre-of-mass motion and rotations of the system) using
the scheme of Falk and Langer [62]. Figure 8(a) shows the
measured strain–strain correlation function G2θ2θ in real space.
Cuts in k space along the kx or ky direction of G̃2θ2θ are
fitted in order to obtain the shear modulus μ = 58.6 kBT

a2 .
A different approach [46] to measure the shear modulus of
the colloidal crystal is to obtain the probability distribution
of the strain variable 2θ . An example of P(2θ) measured
over boxes of volume VB = 16.0a2 is shown in figure 9(b).
The mean-square fluctuations in 2θ are obtained by fitting
a normal distribution to the data and extracting its standard
deviation. They are related to the shear modulus of the solid
via μ = (V 〈(2θ)2〉)−1. The shear modulus obtained according
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Figure 9. (a) Finite size scaling of the shear modulus obtained from
the mean-square fluctuations of 2θ . (b) Example of the measured
probability distributions of the fluctuations in the strain variable 2θ
for a sub-volume VB = 16.0a2.

to this method is dependent on the size of the analysed sub-
volume VB = L2

B . A finite size scaling is used to extract
the shear modulus in the thermodynamic limit, which is μ =
58.7 kBT

a2 . The finite size scaling is shown in figure 9(a), where
the reciprocal value of the shear modulus times the ratio of
sub-volume to analysed volume L B/L is plotted as a function
of this ratio. From these analysis one can see that the treatment
via strain–strain correlation function gives results consistent
with established procedures to within less than 1%.

The strain–strain correlation function G̃2θ2θ (L/a)2 can
furthermore be used to visualize the presence of defects in the
crystalline structures. Its spatial symmetry is sensitive to the
presence of defects. They lead to a pronounced asymmetry in
the correlation function, as displayed in figure 8(b). Here data
from a region of the sample containing defects was analysed.
As in our analysis displacements are calculated from the
average particle positions the strain–strain correlation function
shown in figure 8(b) does not include the singular (Burger’s
vector) contribution to the displacement from dislocation–
antidislocation pairs, as the chosen reference lattice already
includes the defect pairs themselves.

In summary we have shown that the strain–strain
correlation function for shear fluctuations (T > 0) in a
2d soft solid can be analytically predicted and measured in
experiments on colloidal dispersions, thus giving access to the

non-local elastic response of colloidal crystals. Elastic moduli
extracted by fitting the correlation function along specific
directions in Fourier space are consistent with those obtained
by other methods. We believe that the strain correlation
function may serve as a benchmark for characterizing soft
crystals as it is sensitive to the presence of defect pairs.
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