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Abstract – We investigate the dynamics of a glass-forming 2D colloidal mixture and show the
existence of collective motions of the particles. We introduce a mean square displacement MSD
with respect to the nearest neighbors which shows remarkable deviations from the usual MSD
quantifying the individual motion of our particles. Combined with the analysis of the self-part
of the Van Hove function this indicates a coupled motion of particles with their cage as well as
intra-cage hopping processes.
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Introduction. – Supercooled fluids near the glass
transition exhibit a range of interesting dynamical prop-
erties such as non-exponential relaxation functions, two
time relaxation of the system or a dramatic increase of the
time scale for molecular motion close to the glass transi-
tion [1]. Most of these features have been attributed to
spatially heterogeneous relaxation [2–5] and cooperative
motion of particles [6–9]. For instance confocal microscopy
in a colloidal supercooled fluid have evidenced the exis-
tence of populations of fast and slow particles, forming
clusters of a few tens of fast colloids [10]. Most of these
clusters are visible only on the time scale of the order of
the α-relaxation.
Further common features of the dynamics of super-
cooled fluids are the behavior of the self-part of the Van
Hove function and the non-Gaussian parameter [7,11–13].
Both of them reflect the non-Brownian character of parti-
cle motion and it is commonly accepted that the maximum
of the non-Gaussian parameter corresponds to a maximum
in the heterogeneity of the dynamics. More interesting
maybe is the shape of the self-part of the Van Hove func-
tion [14] from which more quantitative information can
be extracted about the nature of the motion. The exis-
tence of two dynamical populations was confirmed from
this quantity in numerous systems like granular media,
colloidal gels, and Lennard Jones mixtures [9,15,16] and
this behavior is also presented as a possible universal
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feature of glass-forming systems [16]. Intensive studies of
dynamical heterogeneities have been performed by simu-
lations, while experimental works in direct space remain
quite rare [6,10]. In this paper we present results from a
study of a 2D experimental colloidal system which consists
of a binary mixture of superparamagnetic particles inter-
acting via a dipole-dipole interaction. This system allows
to study the very nature of the glass transition in 2D. In
addition some of the local features like geometrical frus-
tration are easier to detect compared to 3D [17–20].
The average glassy dynamics of this system has been
studied in [5,21]. Here we focus on the microscopic local
features of planar dynamics.
The organization of the paper is as follows. First we will
briefly describe the experimental system. Second we will
present experimental results and analysis of the dynamics
for both the fluid phase and the supercooled phase.

Materials and methods. – The experimental setup
is well established and has been described elsewhere
[5,22].
The system consists of a suspension of two kinds of
spherical superparamagnetic colloidal particles A and B
with different diameters (dA = 4.5μm, dB = 2.8μm) and
magnetic susceptibilities per particle (χA ≈ 10 ·χB). Due
to their high mass density of ρm ≈ 1.5 g/cm

3, particles
are confined by gravity to a water-air interface formed
by a pending water drop suspended by surface tension
in a top sealed cylindrical hole (6mm diameter, 1mm

66004-p1



S. Mazoyer et al.

water

air

repulsive

H

m

glass

Fig. 1: (Colour on-line) Super-paramagnetic colloidal particles
confined at a water-air interface due to gravity. The curvature
of the interface is actively controlled to be completely flat,
and the system is considered to be ideally two dimensional.
A magnetic field H perpendicular to the interface induces a
magnetic momentM in each bead leading to a repulsive dipolar
pair interaction.

depth) in a glass plate. This basic setup is sketched in
fig. 1. A magnetic fieldH is applied perpendicularly to the
water-air interface inducing a magnetic moment M= χH
in each particle leading to a repulsive dipole-dipole pair
interaction.
The parameter Γ quantifies the strength of the interac-
tion and is defined by the ratio between average magnetic
interaction energy and thermal energy:

Γ =
μ0
4π

H2 · (πρ)(3/2)

kBT
(ξ ·χB +(1− ξ) ·χA)

2,

where ξ denotes the relative number of small particles and
ρ is the 2D density,

ξ =
NB

NA+NB
.

The set of particles is visualized by video microscopy
from below the sample and is recorded by an 8-bit CCD
camera. The gray scale image of the particles is then
analyzed in situ with a computer. The field of view has
a size of ≈ 1mm2 containing typically 3× 103 particles,
whereas the whole sample contains about up to 105

particles. Standard image processing is performed to get
size, number, and positions of the colloids. A computer-
controlled syringe driven by a micro-stage controls the
volume of the droplet to reach a completely flat surface. To
achieve a horizontal interface, the inclination of the whole
experimental setup has to be aligned. This inclination is
controlled actively by micro-stages with a resolution of
∆α≈ 1μrad. After typically several weeks of adjustment
and equilibration best equilibrium conditions for long-
time stability are achieved. During data acquisition the
images are analyzed with a frame rate down to 10Hz.
Trajectories of all particles in the field of view can be
recorded over several days providing the whole phase space
information. The thermal activated “out of plane” motion

of the particles is expected to be in the range of a few tens
of nanometer. Thus, the ensemble is considered as ideally
two dimensional.
Information on all relevant time and length scales is
available, an advantage compared to many other experi-
mental systems. Furthermore, the pair interaction is not
only known but can also be directly controlled over a wide
range.

Experimental observations. – The study of the
mean square displacement for this system has been
presented earlier [5,21]. Here we only recall the main
findings. At Γ= 25 the system is in a fluid state and the
mean square displacement is diffusive at all time for both
small and big particles. For Γ= 110 the system is in an
intermediate phase, where the mean square displacement
exhibits an inflexion point around t= 1000 s. For higher Γ,
e.g, Γ = 338 and Γ= 390 the system is in a glass-forming
phase and the mean square displacement has 3 clearly
distinct regimes. At early times, during the commonly
called β-relaxation, it is diffusive. Then follows a plateau
regime where the mean square displacement is almost
constant. And finally one observes again an increase of
the MSD, commonly called α-relaxation.
In order to get a better idea of microscopic dynamics
we will address the question of caging of particles by their
nearest neighbors. Particles escaping from their cage are
often believed to be responsible for the α-relaxation in
the MSD. Therefore we investigate the displacement of
a colloid with respect to the average displacement of its
nearest neighbors as a function of time. We define the cage
relative MSD as follows:

〈∆r2CR(t)〉= 〈[(�ri(t)−�ri(0))− (�r
cage
i (t)−�r cagei (0))]2〉,

(1)
where 〈〉 is the ensemble average, �ri(t) is the position of
the particle i at time t, and �r cagei the position of the
center of mass of the initially nearest neighbors: �r cagei =
1
Nnn

∑Nnn
j=1 (�rj(t)−�rj(0)), where j runs over the indices

of the nearest neighbors defined by Voronoi tessellation
and Nnn is the number of nearest neighbors. The cage
relative MSD was successfully used in simulations [23] and
experiments [24] of crystallizing systems to determine the
melting temperature in 2D. For a fluid system the cage
relative MSD diverges as a function of time whereas it
saturates in the crystalline, arrested state. In fig. 2 we have
plotted trajectories of particles for Γ = 338 within a box of
250× 180 μm and also their cage relative trajectories. The
trajectories have been plotted for the entire duration of the
experiment, i.e. 80000 s, which is close to the α-relaxation
time for this value of Γ.
In fig. 2a) the dynamics appears strongly heterogeneous,
with zones where trajectories are almost isotropic and
some others where they are elongated, forming zones of
fast moving particles. Both big and small particles are
involved in such clusters. Dynamical heterogeneities are
even more visible in the cage relative trajectories and cage
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a) b)

Fig. 2: a) Trajectories of big (in green) and small (in red) particles in the supercooled phase (Γ= 338) within a box of 250× 180µm
and over a duration of t= 80000 s. b) Same as in a) but the trajectories of the particles are calculated relatively to the center
of mass of their cage.

relative trajectories are also more compact. The existence
of such compact clusters of fast moving particles is in
agreement with what has been found in other systems like
3D colloidal glass [10] or molecular glass formers [25,26].
Presence of a few string-like motion has to be noticed,
as in quasi-2D colloidal system [6] or Lennard Jones
mixtures [3,9] but they do not represent a significant part
of the rearranging clusters.
In fig. 3 we have plotted both, the cage relative MSD and

MSD for the fluid phase, Γ = 25, the intermediate phase,
Γ = 110 and the supercooled case, Γ = 338 and Γ= 390.
Global drift of the system has been subtracted. For the
fluid phase at Γ= 25, we see that MSD and cage rela-
tive MSD are very similar in shape and are very close
to each other (with a ratio less than 1.1). Cage relative
MSD is slightly larger than MSD, which corresponds to
the situation where the motion of neighboring particles is
nearly uncorrelated (as expected in the fluid phase) and
the center of mass is pushed in the opposite direction if the
center particle leaves the cage (producing a kind of coun-
terflow). In the intermediate phase, Γ = 110, cage relative
MSD and classical MSD are quite similar but cage relative
MSD is always smaller than MSD. The deviation becomes
larger at the inflection point. Similarities in the curves of
MSD and cage relative MSD in the intermediate phase
indicate that the motion of particles almost corresponds
to an individual motion, uncorrelated with the motion
of its neighbors, like in the fluid phase. The situation
changes when we look at the curves for the supercooled
phase at Γ= 338 and Γ= 390. For early times curves are
similar in shape and value, but very quickly (after 10 s)
the two curves start to significantly differ and cage rela-
tive MSD remains significantly smaller than MSD. For the
longest times MSD is even twice larger than the cage rela-
tive MSD. This shows that in the supercooled phase the

Fig. 3: Cage relative MSD as a function of time, in red and
usual MSD in black, both for Γ= 25, Γ= 110, Γ = 338 and
Γ= 390, with a Log-Log scale.

motion of particle is of two types: firstly, an intra-cage
motion which is predominant over timescales of the order
of seconds and secondly, a motion of particles with the cage
which starts to appear at the end of the β-relaxation of the
MSD and is of the same order than the intra-cage motion
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Fig. 4: (Colour on-line) a) Self-part of the Van Hove function
N(r)
2πr

(after normalization) for Γ= 110 for various times and

with a Lin-Log scale. (Dashed line) Gaussian fit of N(r)
2πr

for
t= 301 s. b) Same quantity for Γ= 338 and for various times.
Scale in x-coordinate is not the same for the two values of Γ.

in the plateau. This significant collective motion of cages is
a characteristic point of dynamical heterogeneities in our
system for the supercooled phase. In order to analyze more
deeply the nature of the motion of individual particles we
investigate a quite usual quantity which is the number of
particles N(r) which are at a distance r from their origi-
nal position after a given time t. This quantity is expressed
for various times as a function of r. In 2 dimensions, N(r)
must be divided by the geometrical factor 2πr to corre-
spond to a probability and is called self-part of the Van
Hove function. Brownian motion for instance, would give

the characteristic Gaussian shape for N(r)2πr . Differences
to Gaussian behavior are usually associated to dynami-
cal heterogeneities [9,16]. Here we normalize all curves to
one at r= 0 in order to facilitate comparison between the
shapes of the curves.

In fig. 4 we have plotted the quantity N(r)
2πr for the

values of Γ in the intermediate and supercooled phase
respectively and for different times covering all the regimes
of the MSD. We have averaged over 10 successive times,
starting at the time indicated as label of the curves. The
fluid case is trivial and the self-part of the Van Hove
function is a Gaussian (not shown here). For Γ= 110 and

for early times the profile of the N(r)2πr is Gaussian as
indicated by the good agreement with Gaussian fit and
does not differ very strongly from it at any time. Distance
performed by particles are much larger than inter particle
distance (L= 23μm), so particles escape from the cage
created by their nearest neighbors.

Fig. 5: (Colour on-line) a) Cage relative self part of the Van

Hove function NCR(R)
2πR

(after normalization) for Γ= 110 for
various times and with a Lin-Log scale. b) Same quantities
for Γ= 338 and for different values of times.

For Γ= 338 the situation is different. Although the
curve remains close to a Gaussian at short times, devia-
tions from Gaussian start to appear in the plateau regime
and later. Usually such deviations from Gaussian behavior
are associated with dynamical heterogeneities.
It seems quite natural to calculate what is the equivalent
for the self-part of the Van Hove function of the cage
relative MSD. This cage relative self-part of the Van Hove

function, NCR(R)2πR , is defined by the number of particles
at a relative distance R from its origin in regard to the
initial cage of the particle, expressed as a function of R
and normalized as previously. For a particle i the relative
distance R to initial cage is defined as follows:

Ri =| (�ri(t)−�ri(0))−∆�r
cage
i |, (2)

where ∆�r cagei is defined by 1
Nnn

∑Nnn
j (�rj(t)− �rj(0)). Here,

j runs over nearest neighbors, Nnn the number of nearest
neighbors, and �r(t) the position of a particle at time t.
Like for the self-part of the Van Hove function we have
normalized all curves to have a maximum equal to one.

In fig. 5 we have plotted NCR(R)
2πR for the intermediate

case (Γ= 110) and the supercooled case (Γ= 338) for
big particles. All these quantities are averaged over 10
successive starting times. For Γ= 110, the curves are very

similar in shape to those of N(r)2πr . Differences come only
from the fact that the distribution is narrower, which
corresponds to the fluid-like behavior of the cage relative
MSD.
For Γ= 338, the situation is completely different. Before
the plateau regime the curves look Gaussian in shape, but
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their behavior changes at the beginning of the plateau
(t≈ 100 s) when deviation from Gaussian behavior occurs:
the central part seems to remain mainly unchanged but
a tail starts to appear. For large enough times the tail
becomes exponential, as indicated by the linear fit in Lin-
Log scale.
Compared with results from classical self part of the
Van Hove function other systems, the behavior of its cage
relative version now matches what is observed usually
in 3D systems. In ref. [16], Chaudhuri et al. describe
the exponential tail as a possible universal feature for
jammed systems and supercooled fluids exhibiting dynam-
ical heterogeneities. Common idea about this tail is that
it corresponds to jumps of particles out of their cage. In
our case, displacement of the particles in the tail remains
largely lower than the average inter particle distance (L=
23 μm), so jumping particles remain confined in their cage.
This is also compatible with what has been previously seen
in silica glass or Lennard-Jones mixtures [16].

Another interesting fact is that in NCR(R)
2πR for Γ =

338, the Gaussian central parts seem to be very similar
for all times. We have checked (data not shown) that

if we subtract NCR(R)2πR taken at time t= 50 s from its
counterparts after t= 100 s we obtain in all cases curves
corresponding to a pure exponential decay (except at
very low r for which uncertainty of the data is too
high). For low temperatures the residual motion belonging
to the Gaussian part of the cage relative Van Hove
function is that of a particle being trapped in a potential
minimum created by its neighbors. The standard deviation
of the Gaussian probability distribution of positions of the
particle increases soon (within the β-relaxation regime)
towards an asymptotic value. This nicely demonstrates the
validity of the cage picture of mode coupling theory. Any
further increase of cage relative MSD may correspond to
some jumps (or hopping process) of the particles, indicated
by the tail of the cage relative self-part of the Van Hove
function. This image is consistent with improvements of
MCT theory developed to describe hopping processes
(see [27] for instance).
Differences with classical self-part of the Van Hove
function are obvious: jumps of particles which may be
hidden by collective motion are visible in the cage relative
version. This way, they are already visible in the plateau
regime where collective unidirectional motion (included in
the measure of the classical MSD) may hide them.
In fig. 6 a typical trajectory of a big particle for Γ = 390
is plotted. The particle belongs to the 5% fastest particles
and therefore to the tail of the cage relative self-part
of the Van Hove function for t= 113000 s. It shows a
clear intra-cage hopping process. During early times the
particle remains confined around its initial position and
explores the cage. After this phase of exploration the
particle performs a jump which takes about tjump ≈ 200 s
and starts a new cage exploration around this position.
The distance djump ≈ 10μm performed during the jump
is much smaller than the inter particle distance so the

Fig. 6: Trajectory of a single big particle chosen amongst the
5% fastest particles for a sample at Γ= 390. The color code
ranges from pure blue for early times to pure red for the latest
times. The inset shows the projection of the density of presence
of the particle along the transversal axis of the trajectory.
Red and blue curves are Gaussian fits of the peaks. The line
represents the average interparticle distance and corresponds
to L= 23 µm.

jump cannot be explained simply by a jump from one cage
to another but must be a more subtle phenomenon. This
behavior was observed previously both in simulations [16],
and experiments [10,28]. As noticed in refs. [16] and [10],
the jump duration is very small compared to the time
needed for a cage exploration. The nature of this jumping
process is still under debate and many authors [9,16]
invoke cooperative motion of the particles forming the
cage to justify displacement smaller than the average inter
particle distance.

Conclusion. – In this work we have developed a new
analysis tool to provide evidence of two different kinds of
motion in an experimental 2D glass former. The use of
the cage relative mean square displacement (CR-MSD)
allowed us to identify a typical cage dynamics of the
particles and dynamical heterogeneities are much more
pronounced. In the short time limit, particles perform free
diffusion until they start to feel the neighboring particles in
the supercooled stage. In regard to the cage made by the
nearest neighbors, particles behave like Brownian parti-
cles in a potential minimum corresponding to the plateau
in the MSD. Most particles remain blocked inside the
cage, while a few of them start to make some hopping
process already in the plateau regime. The tail of the cage
relative self-part of the Van Hove function, which corre-
sponds to hopping processes becomes significant in the α-
relaxation regime. But comparing the length scales of the
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inter-particle distance and the plateau hight of the MSD,
one finds that most of the fast particles do not completely
leave their neighborhood. This dynamical process, despite
the fact that it does not present any large string motion
as in ref. [3,9], may correspond to cooperative rearrange-
ments which are seen in most 3D systems. In addition
to this, the difference between the classical MSD and the
cage relative MSD has shown the presence of an impor-
tant collective motion of particles with their cage which is
especially large in the plateau and the α-relaxation regime.
This collective motion hides the contribution of the classi-
cal cage dynamics of the particles to the MSD and, looking
at trajectories of fig. 2, is expected to have characteristic
length scale of several cage sizes.
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