Integrierter Kurs Physik IV Exp.-Teil, Atom und Quantenphysik SoSe 11

Universität Konstanz

Prof. G. Maret, Dr. P. Keim

Übungsblatt Nr. 6,

Ausgabedatum: Mo. 23.05.2011

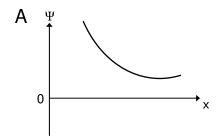
Abgabedatum: Fr. 27.05.2011 in der Vorlesung Besprechung: Mi. 01.06.2011 in den Übungsgruppen

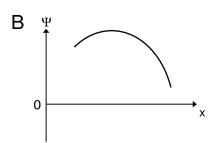
Aufgabe 10: Qualitative Lösung der eindimensionalen Schrödingergleichung

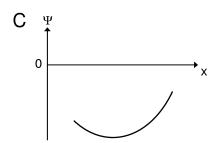
a) Aus

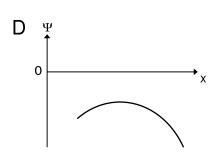
$$\frac{d^2\Psi}{dx^2} = \frac{2m}{\hbar^2} \left(V(x) - E \right) \Psi(x)$$

ersehen wir, dass für V(x) - E > 0 die Krümmung von Ψ , also $\Psi''(x)$, dasselbe Vorzeichen hat wie $\Psi(x)$ und für V(x) - E < 0 die Krümmung $\Psi''(x)$ entgegengesetztes Vorzeichen zu $\Psi(x)$ hat. (In dieser Aufgabe betrachten wir nur reelle Wellenfunktionen.) In welche der beiden eben genannten Kategorien fallen die im Folgenden skizzierten vier Funktionenstücke A bis D?

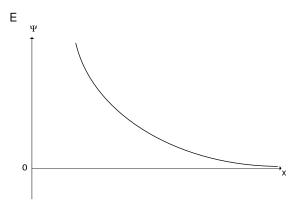




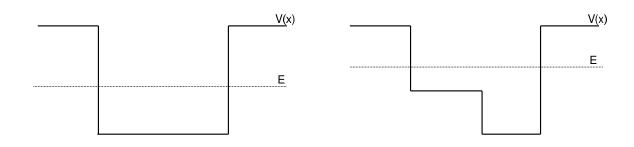




Eine Kurve fehlt noch, das ist jener Teil E, der sich asymptotisch (also für $x \to \infty$), von oben der Achse nähert, dessen Krümmung immer geringer wird, jedoch immer positiv bleibt. Zu welcher Kategorie gehört diese Kurve?



- i Für welchen Fall, V E > 0 oder V E < 0, können Sie verschiedene der gezeigten Stücke zu einer stetigen Wellenfunktion zusammensetzen in einem Bereich, in dem V E sein Vorzeichen nicht ändert? Skizzieren Sie, wie dies z.B. aussehen könnte (Sie dürfen eine Art Funktionenstück auch mehrfach verwenden).
 - ii Welche Art von Funktionenstücken können Sie für einen Halbraum, $]-\infty,0]$ oder $[0,\infty[$, in dem V-E sein Vorzeichen nicht ändert, nicht gebrauchen, weil Sie diese Stücke unter der Bedingung, dass die Wellenfunktion stetig sein und endlich bleiben soll, nicht fortsetzen können?
 - iii Gehen Sie jetzt von einer Potentiallandschaft aus, bei der V(x) E sein Vorzeichen bei x = a von negativ auf positiv wechselt. Skizzieren Sie auf einem endlichen Bereich um x = a herum, auf dem die Wellenfunktion $\Psi(x)$ positiv sein soll, ein mögliches $\Psi(x)$. Welche mathematische Eigenschaft muss $\Psi(x)$ bei x = a haben?
- c) Aus expliziten Wellenfunktionen für bestimmte Potentiale wie z.B. dem Kasten, wissen Sie auch bereits, dass sich für E > V(x) "oszillierende" Lösungen ergeben, und dass $\Psi(x)$ umso "schneller" oszilliert, je größer E V(x) ist. Skizzieren Sie qualitativ Wellenfunktionen, die zu den eingezeichneten Energien (die natürlich jeweils Eigenwerte der Schrödingergleichung sein sollen) in den beiden gezeigten Potentialtöpfen passen. Die Wellenfunktionen sollen hier sowohl für $x \to \infty$ als auch für $x \to -\infty$ positiv sein. Sie dürfen jedoch irgendeine beliebige Anzahl von Nullstellen wählen. Kennzeichnen Sie in Ihren Skizzen, wo Sie Funktionsstücke der Arten A bis E verwendet haben.

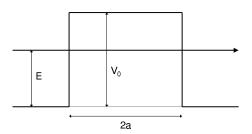


Aufgabe 11: α -Zerfall als Anwendung des Tunneleffekts (6 Punkte)

Die Transmissionswahrscheinlichkeit durch eine symmetrische Rechteckbarriere der Breite 2a lautet folgendermaßen:

$$|T|^2 = \frac{1}{1 + (1 + (\varepsilon^2/4))\sinh^2(2\kappa a)}$$

wobei
$$\varepsilon = \frac{\kappa}{k} - \frac{k}{\kappa}$$
, $k = \frac{\sqrt{2mE}}{\hbar}$, $\kappa = \frac{\sqrt{2m(V_0 - E)}}{\hbar}$.



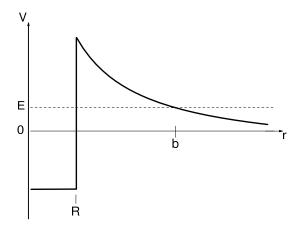
a) Zeigen Sie, dass für eine sehr dicke Barriere, also $\kappa a\gg 1$, sich die Transmissionswahrscheinlichkeit sehr gut als

$$|T|^2 \approx \frac{16E(V_0 - E)}{V_0^2} \exp(-4\sqrt{2m(V_0 - E)}\frac{a}{\hbar})$$
 (*)

nähern lässt.

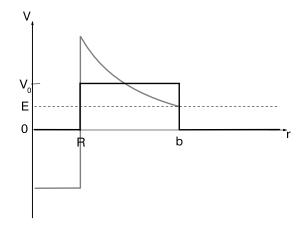
b) Als Beispiel für das Tunneln durch eine Potentialbarriere wollen wir den α -Zerfall betrachten, d.h die Aussendung eines α -Teilchens (He-Kern = 2 Protonen und 2 Neutronen) aus einem Atomkern.

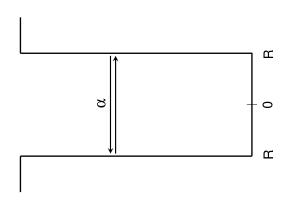
Für das α -Teilchen sieht das durch die restlichen Kernbestandteile verursachte Potential grob folgendermaßen aus: Innerhalb des Kernradius R wird es durch Kernkräfte gebunden (tiefer Potentialtopf). Entfernt sich das α -Teilchen über R hinaus von der Kernmitte, verhalten sich α -Teilchen und Restkern wie zwei entsprechende positive Punktladungen. Für r>R setzen wir das Coulombpotential an. Wie lautet V(r) für r>R?



Hat das α -Teilchen im Kern bereits eine Energie E>0, kann es durch die Barriere tunneln und den Kern verlassen. Die Barriere ist nicht rechteckig, und das Potentialniveau außerhalb ist auch nicht auf beiden Seiten dasselbe. Bei vorgegebenem E lässt sich zunächst der Ort (Radius) b bestimmen, wo der Austritt aus der Barriere erfolgt, und somit die gesehene Barrierendicke.

Um (*) anwenden zu können, vereinfachen Sie das Potential wie skizziert. Nehmen Sie V = 0 an für r < R und r > b. Mitteln Sie alle Werte des 1/r-Potentials zwischen R und b und bestimmen so ein V_0 als Höhe einer Rechteckbarriere, durch die Sie die "schräge" Barriere sinnvoll ersetzen können. Polonium werde durch α -Zerfall in Blei umgewandelt (entsprechende Isotope, so dass mit Weggang des α -Teilchens auch die Neutronenzahl erhalten bleibt). Nehmen Sie weiter $R = 1 \cdot 10^{-14} \text{m}$ und E = 10 MeV als gegebene Zahlenwerte an. Berechnen Sie b, V_0 und $|T|^2$





Um eine Zerfallswahrscheinlichkeit zu bestimmen, muss man außer der Transmissionswahrscheinlichkeit durch die Barriere noch die "Klopffrequenz" kennen, mit der das α -Teilchen gegen die Ränder des Kernpotentials stößt. Um diese abzuschätzen, interpretieren Sie Sie $E=10 \mathrm{MeV}$ als nicht-relativistische kinetische Energie des α -Teilchens. Das α -Teilchen werde ganz klassisch radial durch den Kern hin- und herreflektiert.

c) Schätzen Sie aus Klopffrequenz und Transmissionswahrscheinlichkeit eine Halbwertszeit ab, wann das α -Teilchen mit 50prozentiger Wahrscheinlichkeit den Kern verlassen hat. Informieren Sie sich über Halbwertszeiten von Poloniumisotopen. Haben wir mit der vereinfachten Rechnung hier eine Chance, in der richtigen Größenordnung zu liegen?